Please wait a minute...

   检索  |  高级检索
棉花学报  2018, Vol. 30 Issue (3): 205-214    DOI: 10.11963/1002-7807.zbzxy.20180418
  研究与进展 本期目录 | 过刊浏览 | 高级检索 |
过表达拟南芥AtCIPK 23、AtAKT 1和AtCBL 1基因棉花苗期耐低钾的差异及机制研究
张斌#,刘记#,张朝军,孔德培,王鹏,杨召恩,李付广*,张雪妍*
中国农业科学院棉花研究所/棉花生物学国家重点实验室,河南 安阳 455000
The Difference and Mechanism in Tolerance to Low-Potassium among Cotton Seedlings Over-Expressed Arabidopsis AtCIPK 23, AtAKT 1 and AtCBL 1 Genes
Zhang Bin#, Liu Ji#, Zhang Chaojun, Kong Depei, Wang Peng, Yang Zhao’en, Li Fuguang*, Zhang Xueyan*
State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
全文: PDF(2568 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的】评价过表达拟南芥AtCIPK 23、AtAKT 1和AtCBL 1基因棉花苗期耐低钾能力的差异,为棉花钾高效品种培育提供理论依据。【方法】通过室内水培法,测定比较了转基因棉花和中棉所24(CCRI 24)在适钾、低钾条件下苗期的长势、干物质质量、钾浓度和钾累积量等指标,并从根系形态、钾利用指数、钾转运能力和受胁迫程度等方面综合分析了其可能的生理机制。【结果】适钾条件下,转基因棉花和中棉所24长势基本一致,无显著差异。低钾胁迫时,过表达AtAKT 1基因棉花幼苗总根长、根表面积和根体积约为中棉所24的3倍,整株干物质质量是中棉所24的1.66倍,具有明显的生长优势,并且钾转运能力强、钾利用指数高,受胁迫程度明显降低;而过表达拟南芥AtCIPK 23和AtCBL 1基因棉花幼苗的各项指标与中棉所24相当,无显著差异。【结论】在棉花中过表达拟南芥钾离子通道蛋白基因AtAKT 1能显著提升棉花本身的耐低钾能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张斌
刘记
张朝军
孔德培
王鹏
杨召恩
李付广
张雪妍
关键词 中棉所24苗期耐低钾钾利用胁迫    
Abstract:[Objective] To provide theoretical basis for potassium efficient cotton breeding, this work aimed to evaluate the influence of low potassium on transgenic cotton seedlings over-expressing Arabidopsis thaliana’s AtCIPK 23, AtAKT 1 and AtCBL 1 genes, respectively. [Method] Hydroponics was used to explore the growth vigor, dry weight, potassium concentration and accumulation of transgenic cotton and CCRI 24 seedlings under low and optimum potassium conditions. Furthermore, the root morphology, potassium utilization index, potassium transport ability and the severity to damage were comprehensively analyzed to uncover the possible physiological mechanisms. [Result] Under the optimum conditions of potassium, the transgenic plants and control grew well and showed no significant difference. However, with low potassium stress, the dry weight of plants over-expressing AtAKT 1 gene was 1.66 times of CCRI 24. Its total root length, root surface area and volume were about 3 times than those of CCRI 24. The AtAKT 1 plants also displayed obvious growth advantage, higher potassium utilization index and transport ability, and the severity to damage was lower. Plants over-expressing AtCIPK 23 and AtCBL 1 genes, however, were almost the same as the CCRI 24. [Conclusion] This study revealed that the ability of cotton’s resistance to low potassium was significantly improved by over-expression of AtAKT 1 gene, an exogenous potassium ion channel protein gene from Arabidopsis thaliana.
Key wordsCCRI 24    seedling    tolerance to low-potassium    potassium utilization    stress
收稿日期: 2017-10-16      出版日期: 2018-06-06
中图分类号:  S562.01  
基金资助:中央级公益性科研院所基本科研业务费专项(1610162016011);国家重点研发计划-棉花品质、抗逆等重要性状的功能基因组与调控网络(2016YFD0101006)
*通信作者: 李付广,aylifug@163.com;张雪妍,zhangxueyan@caas.cn   
作者简介: 张斌(1992-),男,硕士研究生,18837299076@163.com;刘记(1989-),男,博士研究生,liuji@caas.cn;#同等贡献
引用本文:   
张斌,刘记,张朝军, 等. 过表达拟南芥AtCIPK 23、AtAKT 1和AtCBL 1基因棉花苗期耐低钾的差异及机制研究[J]. 棉花学报, 2018, 30(3): 205-214.
Zhang Bin,Liu Ji,Zhang Chaojun, et al. The Difference and Mechanism in Tolerance to Low-Potassium among Cotton Seedlings Over-Expressed Arabidopsis AtCIPK 23, AtAKT 1 and AtCBL 1 Genes[J]. Cotton Science, 2018, 30(3): 205-214.
链接本文:  
http://journal.cricaas.com.cn/Jweb_mhxb/CN/10.11963/1002-7807.zbzxy.20180418      或      http://journal.cricaas.com.cn/Jweb_mhxb/CN/Y2018/V30/I3/205
[1] Leigh R A, Jones R G W. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell[J]. New Phytologist, 1984, 97(1): 1-13.<br />
[2] Carmo M, Garciaruiz R, Ferreira M I, et al. The N-P-K soil nutrient balance of portuguese cropland in the 1950s: the transition from organic to chemical fertilization[J]. Scientific Reports, 2017, 7(1): 8111.<br />
[3] 李学斌. 磷酸二氢钾可防治茄子黄萎病[J]. 现代农业, 1989(5): 23-24.<br />
Li X B. Potassium dihydrogen phosphate could prevent Verticillium wilt in eggplant[J]. Modern Agriculture, 1989(5): 23-24.<br />
[4] 侯静, 盛建东, 李雪妮, 等. 棉花苗期钾营养高效品种筛选[J]. 棉花学报, 2008, 20(2):158-160.<br />
Hou Jing, Sheng Jiandong, Li Xueni, et al. Screening of cotton varieties with high potassium efficiency at seedling stage[J]. Cotton Science, 2008, 20(2):158-160.<br />
[5] Ines F, Sonja S, Natalya I, et al. Rice K<sup>+</sup> uptake channel OsAKT 1 is sensitive to salt stress[J]. Planta, 2005, 221(2): 212.<br />
[6] Li J, Long Y, Qi G N, et al. The <em>Os-AKT</em> 1 channel is critical for K+ uptake in rice roots and is modulated by the rice CIPK 23 complex[J]. The Plant Cell, 2014, 26(8): 3387-3402.<br />
[7] Xu J, Li H D, Chen L Q, et al. A protein kinase, interacting with two calcineurin B-like proteins, regulates K<sup>+ </sup>transporter AKT 1 in Arabidopsis[J]. Cell, 2006, 125(7): 1347-1360.<br />
[8] 龙雨. 水稻钾离子通道OsAKT 1生理功能及其调控机制的电生理学研究[D]. 北京: 中国农业大学, 2014.<br />
Long Y. Electrophysiological analysis of function and molecular regulatory mechanism for rice potassium channel OsAKT 1[D]. Beijing: China Agricultual University, 2014.<br />
[9] Xu J, Tian X L, Enejib A E, et al. Functional characterization of GhAKT 1, a novel Shaker-like K+ channel gene involved in K<sup>+</sup> uptake from cotton (<em>Gossypium hirsutum</em>)[J]. Gene, 2014, 545(1): 61-71.<br />
[10] Ardie S W, Liu S K, Tetsuo T. Expression of the AKT 1-type K+ channel gene from <em>Puccinellia tenuiflora,</em> PutAKT 1, enhances salt tolerance in <em>Arabidopsis[</em>J]. Plant Cell Reports, 2010, 29(8): 865-874.<br />
[11] 樊丽娜, 曾巧英, 何慧怡, 等. 拟南芥钾吸收调控基因AtCIPK 23、AtCBL 9和AtAKT 1农杆菌介导共转化甘蔗[J]. 分子植物育种, 2015,12(2): 361-366.<br />
Fang L N, Zen Q Y, He H Y, et al. <em>Agrobacterium</em>-mediated co-transformation of Arabidopsis functional regulating potassium uptake genes <em>AtCIPK</em> 23, <em>AtCBL</em> 9 and <em>AtAKT</em> 1 into sugarcane[J]. Molecular Plant Breeding, 2015, 12(2): 361-366.<br />
[12] 鲁黎明.<em> AtCIPK</em> 23在烟草中过表达的钾效率响应及<em>NtHAK</em> 1的克隆与表达模式研究[D].郑州: 河南农业大学, 2007.<br />
Lu L M.The research of potassium nutrition efficiency response of transgenic <em>AtCIPK </em>23 tobacco plants and molecular cloning and characterization of putative potassium transporter <em>NtHAK</em> 1 in tobacco[D]. Zhengzhou: Henan Agricultural University, 2007.<br />
[13] 李佳. 农杆菌介导AtCIPK 23基因转化马铃薯及其钾效率响应研究[D]. 成都: 四川农业大学, 2010.<br />
Li J. <em>Agrobacterium-</em>mediated transformation of potato (Solanum tuberosum) with AtCIPK 23 gene and its response of potassium nutrition efficiency[D]. Chengdu: Sichuan Agricultural University, 2010.<br />
[14] 黄祯茂, 喻树迅, 姜瑞云, 等. 短季棉新品种——中棉所24[J].中国棉花, 1995, 22(11): 31.<br />
Huang Z M, Yu S X, Jiang R Y, et al. A new short-season cotton variety, CCRI 24[J]. China Cotton, 1995, 22(11): 31.<br />
[15] 李海云, 司东霞, 吕福堂, 等. 不同耐性大白菜苗期根系形态对低钾胁迫的响应[J]. 中国蔬菜, 2015(7): 49-53.<br />
Li H Y, Si D X, Lü F T, et al. Respose of Chinese cabbage seedling's root morphology with different tolerence to potassium deficiency[J]. China Vegetables, 2015(7): 49-53.<br />
[16] 华含白, 李召虎, 田晓莉. 辽棉18与新棉99B苗期耐低钾能力的差异及其机制[J]. 作物学报, 2009, 35(3): 475-482.<br />
Hua H B, Li Z H, Tian X L. Difference and its mechanism in tolerance to low-potassium between Liaomian 18 and NuCOTN99b at seedling stage[J]. Acta Agronomica Sinica, 2009, 35(3): 475-482<br />
[17] 方敦煌, 陈学军, 肖炳光, 等. 231份烤烟种质主要化学成分和农艺性状的遗传多样性分析[J]. 分子植物育种, 2016, 13(11): 3240-3254.<br />
Fang D H, Chen X J, Xiao B G, et al. Genetic diversity analysis of important chemical components and agronomic traits in 231 flue-cured tobacco germplasms[J]. Molecular Plant Breeding, 2016, 13(11): 3240-3254.<br />
[18] László S, Arnould S. Proline: a multifunctional amino acid[J]. Trends in Plant Science, 2010, 15(2): 89-97.<br />
[19] 田晓莉, 王刚卫, 朱睿, 等. 棉花耐低钾基因型筛选条件和指标的研究[J]. 作物学报, 2008, 34(8): 1435-1443.<br />
Tian X L, Wang G W, Zhu R, et al. Conditions and indicators for screening cotton (<em>Gossypium hirsutum)</em> genotypes tolerant to low-potassium[J]. Acta Agronomica Sinica, 2008, 34(8): 1435-<br />
14 43.<br />
[20] 王晓茹, 董合林, 李永旗, 等. 棉花不同品种钾吸收效率差异的根系形态学和生理学机理[J]. 棉花学报, 2016, 28(2):152-<br />
15 9.<br />
Wang X R, Dong H L, Li Y Q, et al. Mechanisms underlying the effects of morphological and physiological characteristics of cotton varieties on differential potassium uptake efficiencies[J]. Cotton Science, 2016, 28(2): 152-159.<br />
[21] 郝艳淑, 姜存仓, 王晓丽, 等. 不同棉花基因型钾效率特征及其根系形态的差异[J]. 作物学报, 2011, 37(11): 2094-2098.<br />
Hao Y S, Jiang C C, Wang X L, et al. Differences of potassium efficiency characteristics and root morphology between two cotton genotypes[J]. Acta Agronomica Sinica, 2011, 37(11): 2094-2098.<br />
[22] Jiang C, Chen F, Gao X. Different responses to potassium stress between potassium high efficiency and potassium low efficiency cotton genotypes[J]. Scientia Agricultura Sinica, 2008, 41(2):488-493.<br />
[23] Brouder S M, Cassman K G. Root development of two cotton materials in relation to potassium uptake and plant growth in a vermiculitic soil[J]. Field Crops Research, 1990, 23(3): 187-203.<br />
[24] Hirsch R E, Lewis B D, Spalding E P, et al. A role for the AKT 1 potassium channel in plant nutrition[J]. Science, 1998, 280(5365): 918-921.<br />
[25] 王毅, 武维华. 植物钾营养高效分子遗传机制[J]. 植物学报, 2009, 44(1): 27-36.<br />
Wang Y, Wu W H. Molecular genetic mechanism of high efficient potassium uptake in plants[J]. Chinese Bulletin of Botany, 2009, 44 (1): 27-36.
[1] 许艳超, 韦洋洋, 李振庆, 蔡小彦, 王玉红, 王星星, 张振梅, 王坤波, 刘方, 周忠丽. 复合盐碱胁迫下半野生棉苗期耐盐性综合评价及其关键生理指标的变化[J]. 棉花学报, 2018, 30(3): 231-241.
[2] 高超, 李明思, 蓝明菊. 土壤水分空间胁迫对棉花根系构型的影响[J]. 棉花学报, 2018, 30(2): 180-187.
[3] 邵德意, 罗海华, 陈功, 刘云涛, 高欣, 汤飞宇. 花铃期土壤干旱对棉花叶片抗氧化及光合作用的影响[J]. 棉花学报, 2018, 30(2): 155-163.
[4] 张希鹤, 李岩, 郁凯, 霍钰阳, 王友华, 陈兵林. 黄萎病胁迫影响棉花幼苗光合及叶绿素荧光特性的机理[J]. 棉花学报, 2018, 30(2): 136-144.
[5] 梅磊, 李玲, Daud M K, 陈进红, 何秋伶, 祝水金. 棉花对重金属胁迫的应答反应与抗性机理研究进展[J]. 棉花学报, 2018, 30(1): 102-110.
[6] 孙淼, 李鹏程, 郑苍松, 刘帅, 刘爱忠, 韩慧敏, 刘敬然, 董合林. 低磷胁迫对不同基因型棉花苗期根系形态及生理特性的影响[J]. 棉花学报, 2018, 30(1): 45-52.
[7] 李远, 王桂霞, 胡大鹏, Abidallah Eltayib, 张丽雅, 张祥, 陈源, 陈德华. 昼夜变温下高温对Bt棉铃壳杀虫蛋白及氮代谢生理的影响[J]. 棉花学报, 2018, 30(1): 38-44.
[8] 吴启侠, 李晋波, 朱建强, 晏军, 苏荣瑞, 徐笑笑. 淹水胁迫下棉花叶片SPAD高光谱估算模型研究[J]. 棉花学报, 2017, 29(6): 579-588.
[9] 王国平, 韩迎春, 李亚兵, 范正义, 田怀芹, 冯璐, 杨北方, 支晓宇, 毛树春. 轻简化基质育苗棉苗栽前离床期耐受生理特性研究[J]. 棉花学报, 2017, 29(5): 466-475.
[10] 杨勇,田新权,刘会利,宋洁,张慧,龙璐,高巍. 陆地棉NAC转录因子基因GhNAC6的克隆、表达和耐盐性分析[J]. 棉花学报, 2017, 29(2): 138-146.
[11] 王俊娟,王帅,陆许可,阴祖军,王德龙,樊伟莉,穆敏,郭丽雪,叶武威,喻树迅. 棉花幼苗对低温胁迫的响应及抗冷机制初步研究[J]. 棉花学报, 2017, 29(2): 147-156.
[12] 郑巨云,George Oluoch,Khan Muhammad Kashif Riaz,周忠丽,王星星,蔡小彦,李雪源,王春英,王玉红,刘方,王坤波. 毛棉苗期抗旱性状的QTL定位[J]. 棉花学报, 2017, 29(1): 29-39.
[13] 苏莹, 甄军波, 张曦, 王玉美, 华金平. 陆地棉转录因子基因GhC2H2的克隆与功能分析[J]. 棉花学报, 2016, 28(6): 555-564.
[14] 马惠, 王琦, 赵鸣, 王红艳, 纪祥龙, 董合忠. 非生物胁迫对棉花次生代谢及棉蚜种群消长的影响[J]. 棉花学报, 2016, 28(4): 324-330.
[15] 赵存鹏, 郭宝生, 王凯辉, 刘素恩, 王兆晓, 刘冬艳, 耿军义. 通过转CaM基因提高了棉花抗寒性[J]. 棉花学报, 2016, 28(3): 234-241.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed