棉花学报 ›› 2021, Vol. 33 ›› Issue (3): 258-268.doi: 10.11963/1002-7807.ykxgqg.20210428
杨可心1(),陈秀叶1,刘畅2,鹿秀云1,郭庆港1,*(
),马平1
收稿日期:
2020-05-04
发布日期:
2021-06-03
通讯作者:
郭庆港
E-mail:2013796428@qq.com;gqg77@163.com
作者简介:
杨可心(1994―),女, 基金资助:
Yang Kexin1(),Chen Xiuye1,Liu Chang2,Lu Xiuyun1,Guo Qinggang1,*(
),Ma Ping1
Received:
2020-05-04
Published:
2021-06-03
Contact:
Guo Qinggang
E-mail:2013796428@qq.com;gqg77@163.com
摘要:
【目的】明确在我国新发现、与澳大利亚生理型菌株亲缘关系较近的棉花枯萎病菌新生理型菌株H70与7号生理小种、澳大利亚生理型菌株ATCC96291菌株之间形态学、产生的毒素种类以及致病力差异。【方法】采用乙酸乙酯提取棉花枯萎病菌毒素,利用高压液相色谱、质谱对毒素进行分离、鉴定,采用离体叶片法评价毒素的致病力,在3种不同类型土壤(河北省保定市定兴县轻壤土、邯郸市成安县褐土和沧州市黄骅市盐碱土)中评价枯萎病菌的致病力。【结果】新生理型菌株H70能产生较多的气生菌丝和单核的小型分生孢子,但不能产生淡褐色色素。H70、7号小种和ATCC96291均产生毒素镰刀菌酸,且7号生理小种分泌量最多,H70分泌量最少。相比7号生理小种,H70在3种不同类型土壤中的致病力均较弱。【结论】镰刀菌酸是棉花枯萎病菌菌株H70、7号生理小种、ATCC96291产生的主要毒素,致病力与毒素的含量正相关。
杨可心,陈秀叶,刘畅,鹿秀云,郭庆港,马平. 棉花枯萎病菌新生理型菌株毒素鉴定及其活性测定[J]. 棉花学报, 2021, 33(3): 258-268.
Yang Kexin,Chen Xiuye,Liu Chang,Lu Xiuyun,Guo Qinggang,Ma Ping. Toxin identification and bioassay of new genotype strain of Fusarium oxysporum f. sp. vasinfectum[J]. Cotton Science, 2021, 33(3): 258-268.
表2
供试土壤理化性质"
采集地点 Collection site | 养分含量 Nutrient content/(g·kg-1) | 电导率 Electrical conductivity /(μS·cm-1) | pH | |||
全氮 Total nitrogen | 全磷 Total phosphorus | 全钾 Total potassium | 有机质 Organic matter | |||
定兴县 Dingxing county | 1.14 | 1.080 | 22.86 | 16.40 | 178 | 8.11 |
成安县 Cheng’an county | 0.88 | 0.860 | 27.90 | 13.87 | 345 | 8.14 |
黄骅市Huanghua city | 0.64 | 0.082 | 18.40 | 11.80 | 362 | 8.43 |
[1] |
Cianchetta A N, Divas R M. Fusarium wilt of cotton: management strategies[J]. Crop Protection, 2007, 73: 40-44.
doi: 10.1016/j.cropro.2015.01.014 |
[2] |
李玉霞, 曲延英, 艾海提·艾合买提,等. 通过GbF3'H基因单独沉默及其与GbCHI和GbDFR基因共沉默研究其在海岛棉中抗枯萎病功能[J/OL]. 棉花学报, 2020, 32(1): 1-10 [2020-05-01]. https://doi.org/10.11963/1002-7807.lyxcqj.20200109.
doi: https://doi.org/10.11963/1002-7807.lyxcqj.20200109 |
Li Yuxia, Qu Yanying, Aihaiti Aihemaiti, et al. Through single silencing GbF3'H gene and its co-silencing with GbCHI and GbDFR genes to study their function in resistance to Fusarium wilt in Gossypium barbadense[J/OL]. Cotton Science, 2020, 32(1): 1-10[2020-05-01]. https://doi.org/10.11963/1002-7807.lyxcqj.20200109.
doi: https://doi.org/10.11963/1002-7807.lyxcqj.20200109 |
|
[3] |
Garber R H, Jorgenson E C, Smith S, et al. Interaction of population levels of Fusarium oxysporum f. sp. vasinfectum and Meloidogyne incognita on cotton[J]. Journal of Nematology, 1979, 11(2): 133-137.
pmid: 19305546 |
[4] |
Bugbee W M. Vascular response of cotton to infection by Fusarium oxysporum f. sp. vasinfectum[J]. Phytopathology, 1970, 60(1): 121-123.
doi: 10.1094/Phyto-60-121 |
[5] |
Kim Y, Hutmacher R B, Davis R M. Characterization of California isolates of Fusarium oxysporum f. sp. vasinfectum[J]. Plant Disease, 2007, 89(4): 366-372.
doi: 10.1094/PD-89-0366 |
[6] | Nirenberg H I, Ibrahim G, Michail S H. Race identity of three isolates of Fusarium oxysporum Schlect. f. sp. vasinfectum (Atk.) Snyd. & Hans. from Egypt and the Sudan[J]. Pflanzenpathology, 1994, 101: 594-597. |
[7] | 田新莉, 赵宗胜, 李国英,等. 新疆棉花枯萎病菌的RAPD分析[J]. 西北农业学报, 2002, 11(4): 4-8. |
Tian Xinli, Zhao Zongsheng, Li Guoying, et al. RAPD analysis of Fusarium oxysporum f. sp. vasinfectum from cotton in Xinjiang[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2002, 11(4): 4-8. | |
[8] |
Wang B, Brubaker C L, Summerell B A, et al. Local origin of two vegetative compatibility groups of Fusarium oxysporum f. sp. vasinfectum in Australia[J]. Evolutionary Applications, 2010, 3: 505-523.
doi: 10.1111/j.1752-4571.2010.00139.x pmid: 25567943 |
[9] |
Guo Q G, Li S Z, Lu X Y, et al. Identification of a new genotype of Fusarium oxysporum f. sp. vasinfectum on cotton in China[J/OL]. Plant Disease, 2015, 99(11): 1569-1577[2020-05-01]. https://apsjournals.apsnet.org/doi/pdf/10.1094/PDIS-12-14-1238-RE.
doi: 10.1094/PDIS-12-14-1238-RE |
[10] |
Portal N, Soler A, Alphonsine P A M, et al. Nonspecific toxins as components of a host-specific culture filtrate from Fusarium oxysporum f. sp. cubense race 1[J/OL]. Plant Pathology, 2017, 67: 467-476[2020-05-01]. http://bsppjournals.onlinelibrary.wiley.com/doi/10.1111/ppa.12736.
doi: 10.1111/ppa.2018.67.issue-2 |
[11] |
Kachlicki P, Jedryczka M. Phenylacetic acid and methyl p-hydroxyphenylacetate-novel phytotoxins of Fusarium oxysporum[J]. Cereal Research Communications, 1997, 25(3): 853-855.
doi: 10.1007/BF03543874 |
[12] |
Crutcher F K, Puckhaber L S, Stipanovic R D, et al. Microbial resistance mechanisms to the antibiotic and phytotoxin fusaric acid[J/OL]. Journal of Chemical Ecology, 2017, 43(10): 996-1006 [2020-05-01]. http://doi.org/10.1007/s10886-017-0889-x.
doi: 10.1007/s10886-017-0889-x pmid: 28986689 |
[13] |
Crutcher F K, Liu J, Puckhaber L S, et al. FUBT, a putative MFS transporter, promotes secretion of fusaric acid in the cotton pathogen Fusarium oxysporum f. sp. vasinfectum[J/OL]. Microbiology, 2015, 161: 875-883 [2020-05-01]. http://doi.org/10.1099/mic.0.000043.
doi: 10.1099/mic.0.000043 pmid: 25627440 |
[14] |
Luz J M, Paterson R, Brayford D. Fusaric acid and other metabolite production in Fusarium oxysporum f. sp. vasinfectum[J]. Letters in Applied Microbiology, 1990, 11(3): 141-144.
doi: 10.1111/j.1472-765X.1990.tb00144.x |
[15] | 姚红燕, 陈利锋, 孙枫,等. 禾谷镰孢Tri12基因敲除突变体的致病力[J]. 南京农业大学学报, 2005, 28(2): 32-36. |
Yao Hongyan, Chen Lifeng, Sun Feng, et al. Significant reduction in pathogenicity in Fusarium graminearum caused by knock-out of Tri12, a trichothecene efflux pump gene[J]. Journal of Nanjing Agricultural University, 2005, 28(2): 32-36. | |
[16] |
Stipanovic R D, Wheeler M H, Puckhaber L S, et al. Nuclear magnetic resonance (NMR) studies on the biosynthesis of fusaric acid from Fusarium oxysporum f. sp vasinfectum[J/OL]. Journal of Agricultural and Food Chemistry, 2011, 59(10): 5351-5356[2020-05-01]. .
doi: 10.1021/jf200628r pmid: 21495723 |
[17] |
Pirayesh S, Zamanizadeh H, Morid B. Comparison of the production of fusaric acid produced by Fusarium oxysporum f. sp. lycopersici in different cultures with HPLC method[J/OL]. International Journal of Biosciences, 2015, 6(3): 355-359 [2020-05-01]. http://dx.doi.org/10.12692/ijb/6.3.355-359.
doi: http://dx.doi.org/10.12692/ijb/6.3.355-359 |
[18] |
Stipanovic R D, Puckhaber L S, Liu J, et al. Phytotoxicity of fusaric acid and analogs to cotton[J/OL]. Toxicon, 2011, 57(1): 176-178 [2020-05-01]. https://doi.org/10.1016/j.toxicon.2010.10.006.
doi: 10.1016/j.toxicon.2010.10.006 pmid: 20955724 |
[19] | Piero R M D, Pascholati S F. Cellulase production by Fusarium oxysporum f. sp. vasinfectum and the role in pathogenicity on cotton plants[J]. Summa Phytopathologica, 2000, 26(3): 336-341. |
[20] |
Bouizgarne B, El-Maarouf-Bouteau H, Frankart C, et al. Early physiological responses of Arabidopsis thaliana cells to fusaric acid: toxic and signalling effects[J]. New Phytologist, 2006, 169(1): 209-218.
pmid: 16390432 |
[21] |
D'Alton A, Etherton B. Effects of fusaric acid on tomato root hair membrane potentials and ATP levels[J]. Plant Physiology, 1984, 74(1): 39-42.
pmid: 16663382 |
[22] |
Samadi L, Behboodi B S. Fusaric acid induces apoptosis in saffron root-tip cells: roles of caspase-like activity, cytochromec, and H2O2[J]. Planta, 2006, 225(1): 223-234.
pmid: 16868776 |
[23] |
Ortiz C S, Bell A A, Magill C W, et al. Specific PCR detection of Fusarium oxysporum f. sp. vasinfectum California race 4 based on a unique Tfo1 insertion event in the PHO gene[J/OL]. Plant Disease, 2016, 101(1): 34-44 [2020-05-01]. http://dx.doi.org/10.1094/PDIS-03-16-0332-RE.
doi: http://dx.doi.org/10.1094/PDIS-03-16-0332-RE |
[24] |
Bridge P D, Ismail M A, Rutherford M A. An assessment of aesculin hydrolysis, vegetative compatibility and DNA polymorphism as criteria for characterizing pathogenic races within Fusarium oxysporum f.sp. vasinfectum[J]. Plant Pathology, 2010, 42(2): 264-269.
doi: 10.1111/ppa.1993.42.issue-2 |
[25] |
Pal N, Kumar A. Variability in morphological and cultural characters of different isolates of Fusarium oxysporum f. sp. lini[J/OL]. International Journal of Current Microbiology and Applied Sciences, 2020, 9(2): 844-853[2021-04-13]. https://doi.org/10.20546/ijcmas.2020.902.102.
doi: https://doi.org/10.20546/ijcmas.2020.902.102 |
[26] |
林玲, 王明江, 周益军. 棉花根部拮抗枯萎病菌或黄萎病菌的可培养内生细菌多样性分析[J/OL]. 棉花学报, 2015, 27(2): 166-175[2020-05-01]. https://doi.org/10.11963/issn.1002-7807.201502010.
doi: https://doi.org/10.11963/issn.1002-7807.201502010 |
Lin Ling, Wang Mingjiang, Zhou Yijun. Diversity analysis of culturable endophytic bacteria with antagonistic activity against Fusarium oxysporum f. sp. vasinfectum or Verticillium dahliae from the roots of Gossypium hirsutum[J/OL]. Cotton Science, 2015, 27(2): 166-175 [2020-05-01]. https://doi.org/10.11963/issn.1002-7807.201502010.
doi: https://doi.org/10.11963/issn.1002-7807.201502010 |
|
[27] |
Chakrabarti D K, Chaudhary K C B. Correlation between virulence and fusaric acid production in Fusarium oxysporum f. sp. carthami[J]. Journal of Phytopathology, 2010, 99(1): 43-46.
doi: 10.1111/j.1439-0434.1980.tb03758.x |
[28] |
Toyoda H. Detoxification of fusaric acid by a fusaric acid-resistant mutant of Pseudomonas solanacearum and its application to biological control of Fusarium wilt of tomato[J]. Phytopathology, 1988, 78: 1307-1311.
doi: 10.1094/Phyto-78-1307 |
[1] | 李鸣凤,彭文勇,何华,刘新伟,赵竹青. 外施不同形态硼对棉花吸收利用硼及其他矿质元素的影响[J]. 棉花学报, 2021, 33(5): 385-392. |
[2] | 王燕,张谦,王树林,韩硕,冯国艺,董明,钱玉源,祁虹. 耕层重构对棉田土壤养分、微生物数量与酶活性的影响[J]. 棉花学报, 2021, 33(5): 422-434. |
[3] | 张岚,程琦,梁士辰,邓雨潇,潘玉欣. 棉花UGPase基因鉴定与生物信息学分析[J]. 棉花学报, 2021, 33(4): 337-346. |
[4] | 马怡茹,吕新,祁亚琴,张泽,易翔,陈翔宇,鄢天荥,侯彤瑜. 基于无人机数码图像的机采棉脱叶率监测模型构建[J]. 棉花学报, 2021, 33(4): 347-359. |
[5] | 苟浩琦,马常凯,张迁,范术丽,马启峰,张朝军. 棉花光敏雄性不育系psm5的培育及其育性转变规律[J]. 棉花学报, 2021, 33(4): 360-367. |
[6] | 王林,张强,马江锋,朱玉永,田英,李红,毕显杰,宋敏,王海标,雷天翔,李召虎,田晓莉,杜明伟,张立祯,赵冰梅. 新疆棉区植保无人机喷施棉花脱叶催熟剂效果研究[J]. 棉花学报, 2021, 33(3): 200-208. |
[7] | 王金刚,姜艳,田甜,朱永琪,杨振康,周天航,张文旭,佟炫梦,孙嘉祺,王海江. 减氮配施生物刺激素对棉花产量及氮肥吸收利用的影响[J]. 棉花学报, 2021, 33(3): 209-223. |
[8] | 易翔,张立福,吕新,张泽,田敏,印彩霞,马怡茹,范向龙. 基于无人机高光谱融合连续投影算法估算棉花地上部生物量[J]. 棉花学报, 2021, 33(3): 224-234. |
[9] | 孙璘,海艳,唐晓雪,祖丽皮亚·艾买,焦瑞莲,任毓忠,李国英. 新疆棉花茎腐病的病原鉴定及其生物学特性研究[J]. 棉花学报, 2021, 33(3): 235-246. |
[10] | 党文芳,刘萍,管力慧,杨红梅,牛新湘,李萍,楚敏,娄恺,史应武. 土壤环境因子对棉花根际与内生拮抗细菌存活数量的影响[J]. 棉花学报, 2021, 33(3): 247-257. |
[11] | 安杰,韩迎春,张正贵,冯璐,雷亚平,杨北方,王国平,李小飞,王占彪,邢芳芳,熊世武,辛明华,李亚兵. 不同熟性棉花品种冠层温度分布特点[J]. 棉花学报, 2021, 33(2): 134-143. |
[12] | 孟浩峰,雷长英,张旺锋,张亚黎. 系统调控下棉花比叶重的变化机制[J]. 棉花学报, 2021, 33(2): 144-154. |
[13] | 张友昌,黄晓莉,胡爱兵,李洪菊,冯常辉,李蔚,张贤红,罗艳萍,杨国正. 长江流域麦/油后直播棉花播种时间下限研究[J]. 棉花学报, 2021, 33(2): 155-168. |
[14] | 王广恩,郭丽,钱玉源,刘祎,张曦. 不同咸水利用方式对棉花叶绿素荧光参数及土壤盐分的影响[J]. 棉花学报, 2021, 33(1): 13-21. |
[15] | 郁凯,霍钰阳,朱俊俊,陈兵林,汤秋香. 盐胁迫下施钾调节棉纤维断裂比强度的糖代谢机制[J]. 棉花学报, 2021, 33(1): 22-32. |
|