棉花学报 ›› 2021, Vol. 33 ›› Issue (1): 22-32.doi: 10.11963/1002-7807.ykcb1.20201106
收稿日期:
2020-03-05
出版日期:
2021-01-15
发布日期:
2021-02-25
通讯作者:
陈兵林
E-mail:2017101005@njau.edu.cn;blchen@njau.edu.cn
作者简介:
郁凯(1995―),男,硕士研究生, 基金资助:
Yu Kai1(),Huo Yuyang1,Zhu Junjun1,Chen Binglin1,*(
),Tang Qiuxiang2
Received:
2020-03-05
Online:
2021-01-15
Published:
2021-02-25
Contact:
Chen Binglin
E-mail:2017101005@njau.edu.cn;blchen@njau.edu.cn
摘要:
【目的】 研究盐胁迫下施钾调节棉花纤维断裂比强度的糖代谢机制,为盐碱地适量施钾提供理论依据。【方法】 以中棉所79(耐盐型)和泗棉3号(盐敏感型)为试验材料,通过设置3个土壤电导率(低盐1.68~1.78 dS·m-1、中盐6.21~6.42 dS·m-1、高盐10.59~11.08 dS·m-1),3个施钾量(0、150、300 kg·hm-2),研究了盐胁迫下施钾对棉花纤维断裂比强度、纤维加厚发育期纤维素累积和蔗糖、β-1,3-葡聚糖及相关酶活性的影响。【结果】 (1)盐胁迫显著降低了棉花纤维断裂比强度;施钾显著缓解了中、高盐胁迫下盐分对纤维断裂比强度的影响,但施钾150、300 kg·hm-2处理间无显著差异。盐碱地施钾,中棉所79的纤维断裂比强度增幅高于泗棉3号。(2)盐胁迫降低了纤维加厚期纤维素的累积量,降低了纤维蔗糖含量并提高了β-1,3-葡聚糖含量;盐碱地施钾则提高了纤维加厚发育期纤维素最大累积速率,提高了花后28 d磷酸蔗糖合成酶以及β-1,3-葡聚糖酶的活性,提高了蔗糖及β-1,3-葡聚糖含量,且施钾缓解作用随盐胁迫程度加重而逐渐减弱。施钾条件下,中棉所79的纤维素最大累积速率及β-1,3-葡聚糖酶活性的增幅高于泗棉3号。 【结论】 盐碱地适量施钾可缓解盐胁迫对棉花纤维断裂比强度的影响。
郁凯,霍钰阳,朱俊俊,陈兵林,汤秋香. 盐胁迫下施钾调节棉纤维断裂比强度的糖代谢机制[J]. 棉花学报, 2021, 33(1): 22-32.
Yu Kai,Huo Yuyang,Zhu Junjun,Chen Binglin,Tang Qiuxiang. The mechanism of sucrose metabolism of potassium regulating the cotton fiber strength under salt stress[J]. Cotton Science, 2021, 33(1): 22-32.
表1
试验地土壤基本情况"
年份 Year | 盐分水平 Salinity levels | 电导率 Electrical Conductivity /(dS·m-1) | 氯化钠含量 NaCl content /(g·kg-1) | pH | 容重 Bulk density /(g·cm-3) | 全氮 Total nitrogen /(g·kg-1) | 速效氮 Available nitrogen /(mg·kg-1) | 速效磷 Available phosphorus /(mg·kg-1) | 速效钾 Available potassium /(mg·kg-1) |
2017 | 低盐LS | 1.68 | 1.53 | 8.03 | 1.34 | 1.12 | 75.56 | 24.82 | 128.11 |
中盐MS | 6.21 | 3.70 | 7.97 | 1.32 | 1.10 | 73.41 | 23.83 | 130.64 | |
高盐HS | 10.59 | 4.91 | 8.09 | 1.39 | 1.06 | 73.39 | 24.79 | 135.27 | |
2018 | 低盐LS | 1.78 | 1.79 | 8.15 | 1.41 | 1.08 | 71.43 | 22.56 | 132.57 |
中盐MS | 6.42 | 3.97 | 8.20 | 1.36 | 1.09 | 71.78 | 21.34 | 130.25 | |
高盐HS | 11.08 | 5.08 | 8.31 | 1.39 | 1.10 | 69.96 | 22.07 | 135.60 |
表2
盐胁迫下施钾对纤维断裂比强度的影响"
盐分水平 Salinity levels | 钾处理 Potassium treatments | 2017 | 2018 | |||
泗棉3号 Simian 3 | 中棉所79 CCRI 79 | 泗棉3号 Simian 3 | 中棉所79 CCRI 79 | |||
低盐 LS | K0 | 27.8 c | 27.4 c | 28.6 c | 28.2 c | |
K150 | 30.2 b | 28.8 b | 30.8 b | 29.9 b | ||
K300 | 31.3 a | 29.2 a | 31.1 a | 31.6 a | ||
中盐 MS | K0 | 26.2 e | 25.3 e | 26.5 e | 26.4 e | |
K150 | 26.9 d | 26.6 d | 27.7 d | 27.7 d | ||
K300 | 27.0 d | 26.7 d | 27.6 d | 27.7 d | ||
高盐 HS | K0 | 23.9 g | 24.2 g | 23.8 g | 24.8 g | |
K150 | 24.5 f | 24.9 f | 24.8 f | 25.9 f | ||
K300 | 24.7 f | 25.1 ef | 24.8 f | 26.2 ef | ||
显著因子 | 2017 | 2018 | ||||
品种(C) | ** | ** | ||||
盐分(S) | ** | ** | ||||
钾素(K) | ** | ** | ||||
品种×盐分(C×S) | ** | ** | ||||
品种×钾素(C×K) | * | ** | ||||
盐分×钾素(S×K) | ** | ** | ||||
品种×盐分×钾素(C×S×K) | ** | ** |
表3
盐胁迫下施钾对纤维素累积特征值的影响"
年份 Year | 盐分水平 Salinity levels | 钾处理 Potassium treatment | 泗棉3号 Simian 3 | 中棉所79 CCRI 79 | |||||||||
Vmax /(mg·g-1·d-1) | T /d | t2 /d | Ym /(mg·g-1) | Y /(mg·g-1) | Vmax /(mg·g-1·d-1) | T /d | t2 /d | Ym /(mg·g-1) | Y /(mg·g-1) | ||||
2017 | 低盐 | K0 | 41.3 | 14.0 | 27.8 | 878.6 | 882.6 cd | 46.0 | 13.0 | 26.4 | 905.3 | 909.6 bc | |
LS | K150 | 46.6 | 13.0 | 27.0 | 919.0 | 923.7 ab | 51.8 | 12.0 | 25.6 | 942.4 | 944.7 ab | ||
K300 | 48.1 | 13.0 | 26.9 | 947.2 | 946.4 a | 54.2 | 11.7 | 25.2 | 957.5 | 963.1 a | |||
中盐 | K0 | 39.5 | 14.5 | 28.6 | 867.5 | 858.6 de | 41.0 | 13.9 | 27.3 | 863.8 | 866.4 cd | ||
MS | K150 | 42.4 | 13.8 | 27.8 | 889.2 | 884.7 cd | 45.5 | 12.9 | 26.2 | 892.6 | 904.5 bc | ||
K300 | 44.7 | 13.2 | 27.1 | 897.7 | 901.8 bc | 48.1 | 12.5 | 25.8 | 913.9 | 934.4 ab | |||
高盐 | K0 | 36.3 | 15.6 | 30.5 | 858.1 | 831.4 e | 37.2 | 15.0 | 29.1 | 844.8 | 842.9 d | ||
HS | K150 | 38.9 | 14.6 | 29.4 | 857.5 | 841.1 e | 40.5 | 13.8 | 28.1 | 846.9 | 851.9 d | ||
K300 | 39.9 | 14.3 | 29.0 | 864.7 | 848.9 de | 41.0 | 14.0 | 28.3 | 870.0 | 875.7 cd | |||
2018 | 低盐 | K0 | 41.8 | 14.1 | 27.5 | 895.5 | 898.6 b | 43.5 | 13.5 | 26.6 | 889.3 | 891.6 cd | |
LS | K150 | 46.2 | 13.6 | 27.2 | 955.4 | 953.4 a | 49.9 | 12.4 | 26.0 | 936.0 | 935.4 ab | ||
K300 | 48.8 | 13.1 | 26.6 | 964.6 | 970.8 a | 54.4 | 11.6 | 25.1 | 952.8 | 957.1 a | |||
中盐 | K0 | 39.6 | 14.2 | 27.7 | 849.2 | 847.4 cd | 36.1 | 16.1 | 29.3 | 881.4 | 869.4 de | ||
MS | K150 | 42.8 | 13.7 | 27.3 | 887.2 | 884.8 bc | 39.5 | 14.8 | 28.0 | 885.8 | 883.6 cd | ||
K300 | 44.6 | 13.2 | 26.7 | 889.9 | 891.8 b | 41.4 | 14.3 | 27.5 | 899.6 | 906.4 bc | |||
高盐 | K0 | 37.6 | 14.6 | 28.8 | 833.4 | 831.8 d | 35.2 | 15.9 | 30.0 | 847.2 | 826.4 f | ||
HS | K150 | 38.2 | 14.8 | 28.8 | 858.3 | 859.8 bcd | 36.3 | 15.8 | 30.1 | 869.1 | 845.4 ef | ||
K300 | 40.0 | 14.3 | 28.3 | 865.6 | 869.8 bcd | 37.8 | 15.2 | 29.6 | 871.5 | 857.8 def |
[1] | 杨劲松. 中国盐渍土研究的发展历程与展望[J]. 土壤学报, 2008, 45(5):837-845. |
Yang Jinsong. Development and prospect of the research on salt-affected soils in China[J]. Acta Pedologica Sinica, 2008, 45(5):837-845. | |
[2] | 董合忠, 辛承松, 李维江. 滨海盐碱地棉田盐度等级划分[J]. 山东农业科学, 2012, 44(3):36-39. |
Dong Hezhong, Xin Chengsong, Li Weijiang. Soil salinity grading of cotton field in coastal saline area[J]. Shandong Agricultural Sciences, 2012, 44(3):36-39. | |
[3] |
Ashraf M, Ahmad S. Influence of sodium chloride on ion accumulation, yield components and fibre characteristics in salt-tolerant and salt-sensitive lines of cotton (Gossypium hirsutum L.)[J]. Field Crops Research, 2000, 66(2):115-127.
doi: 10.1016/S0378-4290(00)00064-2 |
[4] |
Zhang L, Zhang G W, Wang Y H, et al. Effect of soil salinity on physiological characteristics of functional leaves of cotton plants[J]. Journal of Plant Research, 2013, 126(2):293-304.
doi: 10.1007/s10265-012-0533-3 pmid: 23114969 |
[5] | 蒋玉蓉, 吕有军, 祝水金. 棉花耐盐机理与盐害控制研究进展[J]. 棉花学报, 2006, 18(4):248-254. |
Jiang Yurong, Lü Youjun, Zhu Shuijin. Advance in studies of the mechanism of salt tolerance and controlling of salt damage in upland cotton[J]. Cotton Science, 2006, 18(4):248-254. | |
[6] | 董合忠, 辛承松, 唐薇, 等. 山东东营滨海盐渍棉田盐分与养分的季节性变化及对棉花产量的影响[J]. 棉花学报, 2006, 18(6):362-366. |
Dong Hezhong, Xin Chengsong, Tang Wei, et al. Seasonal changes of salinity and nutrients in the coastal saline soil in Dongying, Shandong, and their effects on cotton yield[J]. Cotton Science, 2006, 18(6):362-366. | |
[7] | 李宽意, 刘正文, 胡耀辉, 等. 影响盐碱地作物产量的土壤化学特征分析[J]. 江苏农业科学, 2002 (3):76-78. |
Li Kuanyi, Liu Zhengwen, Hu Yaohui, et al. Analysis of soil chemical characteristics affecting crop yield in saline-alkali land[J]. Jiangsu Agricultural Sciences, 2002 (3):76-78. | |
[8] | 张炎, 王讲利, 李磐, 等. 新疆棉田土壤养分限制因子的系统研究[J]. 水土保持学报, 2005, 19(6):57-60. |
Zhang Yan, Wang Jiangli, Li Pan, et al. A systematic study on soil nutrient limiting factors in cotton fields in Xinjiang[J]. Journal of Soil and Water Conservation, 2005, 19(6):57-60. | |
[9] |
Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59:651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910 |
[10] |
Zhu J K. Regulation of ion homeostasis under salt stress[J]. Current Opinion in Plant Biology, 2003, 6(5):441-445.
doi: 10.1016/S1369-5266(03)00085-2 |
[11] | 展曼曼, 王宁, 田晓莉. 棉花钾营养效率的基因型差异研究进展[J]. 棉花学报, 2012, 24(2):176-182. |
Zhan Manman, Wang Ning, Tian Xiaoli. Review of genotypic differences and underlying mechanisms in potassium efficiency of cotton (Gossypium hirsutum)[J]. Cotton Science, 2012, 24(2):176-182. | |
[12] |
Minton E B, Ebelhar M W. Potassium and aldicarb-disulfoton effects on Verticillium wilt, yield, and quality of cotton[J]. Crop Science, 1991, 31(1):209-212.
doi: 10.2135/cropsci1991.0011183X003100010046x |
[13] |
Yang J S, Hu W, Zhao W Q, et al. Soil potassium deficiency reduces cotton fiber strength by accelerating and shortening fiber development[J]. Scientific Reports, 2016, 6:28856.
doi: 10.1038/srep28856 |
[14] |
Ruan Y L, Xu S M, White R, et al. Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover[J]. Plant Physiology, 2004, 136(4):4104-4113.
doi: 10.1104/pp.104.051540 |
[15] |
Wang Y H, Shu H, Chen B L, et al. The rate of cellulose increase is highly related to cotton fibre strength and is significantly determined by its genetic background and boll period temperature[J]. Plant Growth Regulation, 2009, 57(3):203.
doi: 10.1007/s10725-008-9337-9 |
[16] |
Ruan Y L, Chourey P S. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds[J]. Plant physiology, 1998, 118(2):399-406.
doi: 10.1104/pp.118.2.399 pmid: 9765525 |
[17] | Peng J, Zhang L, Liu J R. et al. Effects of soil salinity on sucrose metabolism in cotton fiber[J/OL]. PLoS One, 2016, 11(5): 16-32(2016-05-26)[2020-02-18]. http://doi.org/10.1371/journal.pone.0156398 . |
[18] |
Almeida D M, Oliveira M M, Saibo N J M. Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants[J]. Genetics and Molecular Biology, 2017, 40(1):326-345.
doi: 10.1590/1678-4685-gmb-2016-0106 |
[19] |
Barragán V, Leidi E O, Andrés Z, et al. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis[J]. The Plant Cell, 2012, 24(3):1127-1142.
doi: 10.1105/tpc.111.095273 |
[20] | Wakelyn P J, Bertoniere N R, French A D, et al. Cotton fiber chemistry and technology[M]. Boca Raton, FL: CRC Press, 2006. |
[21] | Akram M S, Ashraf M, Akram N A. Effectiveness of potassium sulfate in mitigating salt-induced adverse effects on different physio-biochemical attributes in sunflower (Helianthus annuus L.)[J]. Flora-Morphology, Distribution, Functional Ecology of Plants, 2009, 204(6):471-483. |
[22] |
Ashraf M, Abid M, Teixeira Da Silva J A, et al. Silicon and potassium nutrition enhances salt adaptation capability of sunflower by improving plant water status and membrane stability[J]. Communications in Soil Science and Plant Analysis, 2015, 46(8):991-1005. DOI: 10.1080/00103624.2015.1018527.
doi: 10.1080/00103624.2015.1018527 |
[23] |
Ashraf M, Shahzad S M, Imtiaz M, et al. Ameliorative effects of potassium nutrition on yield and fiber quality characteristics of cotton (Gossypium hirsutum L.) under NaCl stress[J]. Soil and Environment, 2017, 36(1):51-58. DOI: 10.25252/SE/17/31054.
doi: 10.25252/SE/17/31054 |
[24] |
Oosterhuis D M, Loka D A, Raper T B. Potassium and stress alleviation: physiological functions and management of cotton[J]. Journal of Plant Nutrition and Soil Science, 2013, 176(3): 331-343. DOI: 10.1002/jpln.201200414.
doi: 10.1002/jpln.201200414 |
[25] |
Shu H M, Zhou Z G, Xu N Y, et al. Sucrose metabolism in cotton (Gossypium hirsutum L.) fibre under low temperature during fibre development[J]. European Journal of Agronomy, 2009, 31(2):61-68.
doi: 10.1016/j.eja.2009.03.004 |
[26] |
Khle H, Jeblick W, Poten F, et al. Chitosan-elicited callose synjournal in soybean cells as a Ca2+-dependent process[J]. Plant Physiology, 1985, 77(3):544-551.
doi: 10.1104/pp.77.3.544 |
[27] | 汤章城. 现代植物生理学实验指南[M]. 北京: 科学出版社, 1999. |
Tang Zhangcheng. Modern plant physiology experiment [M]. Beijing: Science Press, 1999. | |
[28] |
Winter H, Huber S C. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes[J]. Critical Reviews in plant sciences, 2000, 19(1):31-67.
doi: 10.1080/07352680091139178 |
[29] |
Meng Y L, Lv F J, Zhao W Q, et al. Plant density influences fiber sucrose metabolism in relation to cotton fiber quality[J]. Acta Physiologiae Plantarum, 2016, 38(5):112. DOI: 10.1007/s11738-016-2129-3.
doi: 10.1007/s11738-016-2129-3 |
[30] |
Ashraf M, Ahmad S. Genetic effects for yield components and fibre characteristics in upland cotton (Gossypium hirsutum L.) cultivated under salinized (NaCl) conditions[J]. Agronomie, 2000, 20(8):917-926.
doi: 10.1051/agro:2000168 |
[31] |
Chen Y L, Wang H M, Hu W, et al. Co-occurring elevated temperature and waterlogging stresses disrupt cellulose synjournal by altering the expression and activity of carbohydrate balance-associated enzymes during fiber development in cotton[J]. Environmental and Experimental Botany, 2017, 135:106-117. DOI: 10.1016/j.envexpbot.2016.12.012.
doi: 10.1016/j.envexpbot.2016.12.012 |
[32] | 胡宏标, 张文静, 王友华, 等. 棉纤维加厚发育相关物质对纤维比强度的影响[J]. 西北植物学报, 2007, 27(4):726-733. |
Hu Hongbiao, Zhang Wenjing, Wang Youhua, et al. Matters related with cotton fiber thickening development and fiber strength[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(4):726-733. | |
[33] |
Haigler C H, Ivanova-Datcheva M, Hogan P S, et al. Carbon partitioning to cellulose synjournal[J]. Plant Molecular Biology, 2001, 47(1-2):29-51.
pmid: 11554477 |
[34] |
Inouhe M, Nevins D. Regulation of cell wall glucanase activities by non-enzymic proteins in maize coleoptiles[J]. International Journal of Biological Macromolecules, 1997, 21(1-2):15-20.
pmid: 9283011 |
[35] | 张文静, 胡宏标, 陈兵林, 等. 棉纤维加厚发育生理特性的基因型差异及对纤维比强度的影响[J]. 作物学报, 2007, 33(4):531-538. |
Zhang Wenjing, Hu Hongbiao, Chen Binglin, et al. Genotypic differences in some physiological characteristics during cotton fiber thickening and its relationship with fiber strength[J]. Acta Agronomica Sinca. 2007, 33(4):531-538. | |
[36] | 彭军. 棉纤维发育及产量品质对土壤盐分的响应[D]. 南京: 南京农业大学, 2015. |
Peng Jun. Fiber development, yield and fiber quality of cotton response to soil salt stress[D]. Nanjing: Nanjing Agricultural University, 2015. | |
[37] |
Moravíková J, Libantová J, Heldák J, et al. Stress-induced expression of cucumber chitinase and Nicotiana plumbaginifolia β-1, 3-glucanase genes in transgenic potato plants[J]. Acta Physiologiae Plantarum, 2007, 29(2):133-141.
doi: 10.1007/s11738-006-0017-y |
[38] | 李蕾, 云兴福, 康利平, 等. 氯钾离子共体诱导后黄瓜体内几丁质酶和β-1,3-葡聚糖酶活性的研究[J]. 内蒙古农业大学学报(自然科学版), 2007, 28(2):119-124. |
Li Lei, Yun Xingfu, Kang Liping, et al. The researches of chitinase and β-1,3-glucanase activities induced with copolymer of chlorine and potassium ions in cucumber leaf[J]. Journal of Inner Mongolia Agricultural University, 2007, 28(2):119-124. | |
[39] |
Razzouk S, Whittington W J. Effects of salinity on cotton yield and quality[J]. Field Crops Research, 1991, 26(3-4):305-314.
doi: 10.1016/0378-4290(91)90007-I |
[1] | 李鸣凤,彭文勇,何华,刘新伟,赵竹青. 外施不同形态硼对棉花吸收利用硼及其他矿质元素的影响[J]. 棉花学报, 2021, 33(5): 385-392. |
[2] | 王燕,张谦,王树林,韩硕,冯国艺,董明,钱玉源,祁虹. 耕层重构对棉田土壤养分、微生物数量与酶活性的影响[J]. 棉花学报, 2021, 33(5): 422-434. |
[3] | 张岚,程琦,梁士辰,邓雨潇,潘玉欣. 棉花UGPase基因鉴定与生物信息学分析[J]. 棉花学报, 2021, 33(4): 337-346. |
[4] | 马怡茹,吕新,祁亚琴,张泽,易翔,陈翔宇,鄢天荥,侯彤瑜. 基于无人机数码图像的机采棉脱叶率监测模型构建[J]. 棉花学报, 2021, 33(4): 347-359. |
[5] | 苟浩琦,马常凯,张迁,范术丽,马启峰,张朝军. 棉花光敏雄性不育系psm5的培育及其育性转变规律[J]. 棉花学报, 2021, 33(4): 360-367. |
[6] | 王林, 张强, 马江锋, 朱玉永, 田英, 李红, 毕显杰, 宋敏, 王海标, 雷天翔, 李召虎, 田晓莉, 杜明伟, 张立祯, 赵冰梅. 新疆棉区植保无人机喷施棉花脱叶催熟剂效果研究[J]. 棉花学报, 2021, 33(3): 200-208. |
[7] | 王金刚, 姜艳, 田甜, 朱永琪, 杨振康, 周天航, 张文旭, 佟炫梦, 孙嘉祺, 王海江. 减氮配施生物刺激素对棉花产量及氮肥吸收利用的影响[J]. 棉花学报, 2021, 33(3): 209-223. |
[8] | 易翔, 张立福, 吕新, 张泽, 田敏, 印彩霞, 马怡茹, 范向龙. 基于无人机高光谱融合连续投影算法估算棉花地上部生物量[J]. 棉花学报, 2021, 33(3): 224-234. |
[9] | 孙璘, 海艳, 唐晓雪, 祖丽皮亚·艾买, 焦瑞莲, 任毓忠, 李国英. 新疆棉花茎腐病的病原鉴定及其生物学特性研究[J]. 棉花学报, 2021, 33(3): 235-246. |
[10] | 党文芳, 刘萍, 管力慧, 杨红梅, 牛新湘, 李萍, 楚敏, 娄恺, 史应武. 土壤环境因子对棉花根际与内生拮抗细菌存活数量的影响[J]. 棉花学报, 2021, 33(3): 247-257. |
[11] | 杨可心, 陈秀叶, 刘畅, 鹿秀云, 郭庆港, 马平. 棉花枯萎病菌新生理型菌株毒素鉴定及其活性测定[J]. 棉花学报, 2021, 33(3): 258-268. |
[12] | 安杰,韩迎春,张正贵,冯璐,雷亚平,杨北方,王国平,李小飞,王占彪,邢芳芳,熊世武,辛明华,李亚兵. 不同熟性棉花品种冠层温度分布特点[J]. 棉花学报, 2021, 33(2): 134-143. |
[13] | 孟浩峰,雷长英,张旺锋,张亚黎. 系统调控下棉花比叶重的变化机制[J]. 棉花学报, 2021, 33(2): 144-154. |
[14] | 张友昌,黄晓莉,胡爱兵,李洪菊,冯常辉,李蔚,张贤红,罗艳萍,杨国正. 长江流域麦/油后直播棉花播种时间下限研究[J]. 棉花学报, 2021, 33(2): 155-168. |
[15] | 王广恩,郭丽,钱玉源,刘祎,张曦. 不同咸水利用方式对棉花叶绿素荧光参数及土壤盐分的影响[J]. 棉花学报, 2021, 33(1): 13-21. |
|