棉花学报 ›› 2021, Vol. 33 ›› Issue (3): 269-279.doi: 10.11963/1002-7807.yjkj.20210419
杨静1,2(),马益赞1,王为然2,闵玲1,宁新民2,孔杰2,*(
)
收稿日期:
2019-11-08
发布日期:
2021-06-03
通讯作者:
孔杰
E-mail:hzjingy@126.com;lingmin@mail.hzau.edu.cn
作者简介:
杨静 (1989―),女,硕士, 基金资助:
Yang Jing1,2(),Ma Yizan1,Wang Weiran2,Min Ling1,Ning Xinmin2,Kong Jie2,*(
)
Received:
2019-11-08
Published:
2021-06-03
Contact:
Kong Jie
E-mail:hzjingy@126.com;lingmin@mail.hzau.edu.cn
摘要:
【目的】为建立海岛棉发育过程中花蕾长度与花药发育时期的关系。【方法】以海岛棉新海35为研究对象,采用改良的半薄切片和甲苯胺蓝染色技术,对不同生长时期花蕾的花药进行切片观察,明确花蕾长度与花药发育时期的对应关系。【结果】通过形态观察发现,在海岛棉的花发育过程不同时期花蕾的萼片、花瓣和花药的形态、颜色、大小以及花丝和柱头的长度出现明显变化。切片观察发现,从花芽出现到花药开裂,经历花原基的形成、花药原基的出现、花粉母细胞形成、四分体时期、绒毡层降解、减数分裂、花药开裂等14个发育时期。新海35花蕾长度5~6 mm、7~8 mm、8~9 mm和11~14 mm分别对应花药发育中的花粉母细胞形成期、四分体时期、小孢子释放期和绒毡层降解时期,也是成花过程中尤为关键的4个时期。通过对花粉萌发、花粉管伸长、受精过程、胚乳的发育等进行观察,明晰了海岛棉花粉成熟到完成受精再到纤维发育所需的具体时间和详细过程。【结论】海岛棉各个时期花蕾的表型与陆地棉不同,且花蕾大小及花药颜色随着花药细胞发育而变化,并伴随着细胞内部的代谢过程及正常发育所需物质的转换;通过花蕾大小及表型可以判定海岛棉花药发育时期。花粉成熟后,花粉的萌发、花粉管的伸长、双受精及胚乳发育分别发生在授粉后的0.5~1 h、8 h、24 h和50 h。
杨静,马益赞,王为然,闵玲,宁新民,孔杰. 海岛棉新海35花药发育及花粉受精的研究[J]. 棉花学报, 2021, 33(3): 269-279.
Yang Jing,Ma Yizan,Wang Weiran,Min Ling,Ning Xinmin,Kong Jie. Research on anther development and fertilization of Gossypium barbadense L. Xinhai 35[J]. Cotton Science, 2021, 33(3): 269-279.
图2
新海35花蕾长度与花药发育时期的对应关系 A:花蕾长度为0~0.5 mm时,花瓣已经开始生长,花药原基还未出现。B:花蕾0.5~1 mm时,雄蕊原基出现。C:花蕾1~2 mm时为雌蕊原基发育阶段,雄蕊管原基伸长,雌蕊原基出现。D:花蕾2~3 mm时为孢原细胞形成阶段,来源于雄蕊原基中间层(L2层)的孢原细胞已形成。E:花蕾3~4 mm时为孢原细胞分化阶段,孢原细胞分化形成周缘层与造孢细胞。F:花蕾4~5 mm时为多层细胞形成阶段,裂口与微管组织形成。G:花蕾5~6 mm时为花粉母细胞阶段,花药的4层细胞壁分化形成,花粉母细胞形成。H:花蕾为6~7 mm时为减数分裂阶段,花粉母细胞进行减数分裂。Br:苞叶;Se:萼片;Pe:花瓣原基;Sta:雄蕊原基;Pis:雌蕊原基;L1,L2和L3为三层雄蕊原基;P:周缘层;Ar:孢原细胞;Sp:造孢细胞;E:表皮层;En:内皮层;ML:中间层;T:绒毡层;StR:裂口区域;C:连接区;V:维管区;St:裂口;MMC:花粉母细胞;Tds:四分体;Msp:小孢子。图A和B比例尺为100 μm,D、E比例尺为20 μm,其它图为50 μm。"
图3
新海35花粉萌发与花粉管伸长过程 A:花柱与花药部分形态。B:胚珠纵切,可见外珠被和厚珠心。C:花粉粒萌发形成花粉管。D:成熟胚囊为7细胞8核结构。E:花粉管中的两个生殖核,箭头表示花粉管生长方向。F:箭头下部为营养核。G:箭头指示下为1个营养核,上为2个生殖核。H:花粉管进入珠孔。I:花粉管进入珠心组织。J:2个助细胞和1个卵细胞呈“品”字形分布。K:合点端的3个反足细胞。L:丝状器。AC:反足细胞;EC:卵细胞;ES:胚囊;FA:丝状器;II:内珠被;Lo:子房室;MI:珠孔;Nuc:珠心;OI:外珠被;PG:花粉粒;PL:胎座;PN:极核;PT:花粉管: SP:柱头乳突;Sta:雄蕊;Sty:花柱;Syn:助细胞;TT:引导组织。图A bars为1 mm,图B、D、J的bar为100 μm,图L为20 μm,其余均为50 μm。"
图4
新海35号胚乳发育过程 A:1个精子靠近卵细胞,另1个精子仍在附近。B:授粉后24 h,1个精子靠近1个极核。C:授粉后24 h,有2个精子进入极核。D:授粉后50 h,具有2个游离核的初生胚乳。E:宿存助细胞和体积缩小的受精卵。F:授粉后74 h,已形成较多的游离核。G:授粉后74 h,受精卵进行胚的第一次分裂,形成2个子细胞。H:授粉后74 h,纤维细胞明显伸长。EC:卵细胞;SC:精子;ES:胚囊;Syn:助细胞;Nuc:珠心;Psy:宿存助细胞;Z:合子;PN:极核;End:胚乳;EM:胚;II:内珠被;OI:外珠被;EH:表皮毛。图A、B和G的bar为20 μm,图C、D和E为50 μm,图F和H为100 μm。"
[1] |
Cui Y W, Hu C, Zhu Y F, et al. CIK receptor kinases determine cell fate specification during early anther development in Arabidopsis[J]. The Plant Cell, 2018, 30 (10) 2383-2401. DOI: 10.1105/tpc.17.00586.
doi: 10.1105/tpc.17.00586 |
[2] |
Sanders P M, Bui A Q, Weterings K, et al. Anther developmental defects in Arabidopsis thaliana male-sterile mutants[J]. Sexual Plant Reproduction, 1999, 11(6): 297-322. DOI: 10.1007/s004970050158.
doi: 10.1007/s004970050158 |
[3] |
Zhao Y, Liu R, Xu Y T, et al. AGLF provides C-function in floral organ identity through transcriptional regulation of AGAMOUS in Medicago truncatula[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(11): 5176-5181. DOI: 10.1073/pnas.1820468116.
doi: 10.1073/pnas.1820468116 |
[4] |
许自龙, 汪阳东, 陈益存,等. 山鸡椒雄花花芽发育形态解剖特征观察[J]. 植物科学学报, 2017, 35(2): 152-163. DOI: 10.11913/PSJ.2095-0837.2017.20152.
doi: 10.11913/PSJ.2095-0837.2017.20152 |
Xu Zilong, Wang Yangdong, Chen Yicun, et al. Observation of the morphological and anatomical characteristics of male flower bud development in Litsea cubeba (Lour.) Pers.[J]. Plant Science Journal, 2017, 35(2): 152-163.
doi: 10.11913/PSJ.2095-0837.2017.20152 |
|
[5] |
Chasan R. A time to flower[J]. The Plant Cell, 1994, 6 (1): 1-3. DOI: 10.1105/tpc.6.1.1.
doi: 10.1105/tpc.6.1.1 |
[6] |
Boachon B, Burdloff Y, Ruan JX, et al. A promiscuous CYP706A3 reduces terpene volatile emission from Arabidopsis flowers, affecting florivores and the floral microbiome[J]. The Plant Cell, 2019, 31(12): 2947-2972. DOI: 10.1105/tpc.19.00320.
doi: 10.1105/tpc.19.00320 pmid: 31628167 |
[7] |
董承光, 王娟, 周小凤,等. 基于表型性状的陆地棉种质资源遗传多样性分析[J]. 植物遗传资源学, 2016, 17(3): 438-446. DOI: 10.13430/j.cnki.jpgr.2016.03.006.
doi: 10.13430/j.cnki.jpgr.2016.03.006 |
Dong Chengguang, Wang Juan, Zhou Xiaofeng, et al. Evaluation on genetic diversity of cotton germplasm resources (Gossypium hirsutum L. ) on morphological characters[J]. Journal of Plant Genetic Resources, 2016, 17(3):438-446.
doi: 10.13430/j.cnki.jpgr.2016.03.006 |
|
[8] |
代攀虹, 孙君灵, 何守朴,等. 陆地棉核心种质表型性状遗传多样性分析及综合评价[J]. 中国农业科学, 2016, 49(19): 3694-3708. DOI: 10.3864/j.issn.0578-1752.2016.19.003.
doi: 10.3864/j.issn.0578-1752.2016.19.003 |
Dai Panhong, Sun Junling, He Shoupu, et al. Comprehensive evaluation and genetic diversity analysis of phenotypic traits of core collection in upland cotton[J]. Scientia Agricultura Sinica, 2016, 49(19): 3694-3708
doi: 10.3864/j.issn.0578-1752.2016.19.003 |
|
[9] |
Ma Y Z, Min L, Wang M J, et al. Disrupted genome methylation in response to high temperature has distinct affects on microspore abortion and anther indehiscence[J]. The Plant Cell, 2018, 30(7): 1387-1403. DOI: 10.1105/tpc.18.00074.
doi: 10.1105/tpc.18.00074 |
[10] | 吴元龙. 陆地棉隐性核不育系1355A败育机制转录组学与蛋白质组学研究[D]. 武汉: 华中农业大学, 2016. |
Wu Yuanlong. Transcriptomic and proteomic analysis on recessive genic male sterile line 1355A of upland cotton[D]. Wuhan: Huazhong Agricultural University, 2016. | |
[11] |
Min L, Li Y, Hu Q, et al. Sugar and auxin signaling pathways respond to high-temperature stress during anther development as revealed by transcript profiling analysis in cotton[J]. Plant Physiology, 2014, 164(3): 1293-1308. DOI: 10.1104/pp.113.232314.
doi: 10.1104/pp.113.232314 |
[12] |
朱美霞, 李永起, 戴小枫. 棉酚腺体和棉酚含量的遗传分析及SSR标记[J]. 分子植物育种, 2004, 2 (2): 235-239. DOI: CNKI:SUN:FZZW.0.2004-02-017.
doi: CNKI:SUN:FZZW.0 |
Zhu Meixia, Li Yongqi, Dai Xiaofeng. Genetic analysis and SSR tagging of gossypol glands and gossypol content of upland cotton[J]. Molecular Plant Breeding, 2004, 2 (2): 235-239.
doi: CNKI:SUN:FZZW.0 |
|
[13] | 郭岩. 棉花开放花蕾基因的精细定位及功能初步验证[D]. 北京: 中国农业科学院, 2018. |
Guo Yan. Fine mapping and preliminary function verification of open flower buds in cotton[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. | |
[14] |
代攀虹, 孙君灵, 贾银华,等. 利用表型数据构建陆地棉核心种质[J]. 植物遗传资源学报, 2016, 17(6): 961-968. DOI: 10.13430/j.cnki.jpgr.2016.06.001.
doi: 10.13430/j.cnki.jpgr.2016.06.001 |
Dai Panhong, Sun Junling, Jia Yinhua, et al. Comprehensive evaluation and genetic diversity analysis of phenotypic traits of core collection in upland cotton[J]. Journal of Plant Genetic Resources, 2016, 49(19): 3694-3708.
doi: 10.13430/j.cnki.jpgr.2016.06.001 |
|
[15] |
郑茜子, 赵冰, 曾慧敏,等. 3种不同颜色秦岭美容杜鹃花瓣中色素组成和含量比较分析[J]. 西北林学院学报, 2017, 32(1): 62-68. DOI: 10.3969/j.issn.1001-7461.2017.01.10.
doi: 10.3969/j.issn.1001-7461.2017.01.10 |
Zheng Xizi, Zhao Bing, Zeng Huimin, et al. Comparative analysis of composition and content of pigments in petals of three different colors of Rhododendron calophytum in Qinling mountains[J]. Journal of Northwest Forestry University, 2017, 32(1): 62-68.
doi: 10.3969/j.issn.1001-7461.2017.01.10 |
|
[16] |
李春艳, 石洪亮, 文如意,等. 海岛棉和陆地棉花铃期光合特性及氮素累积特性的差异[J]. 棉花学报, 2018, 30(2): 164-171. DOI: 10.11963/1002-7807.lcyzjs.20180302.
doi: 10.11963/1002-7807.lcyzjs.20180302 |
Li Chunyan, Shi Hongliang, Wen Ruyi, et al. Differences of the photosynthetic properties and nitrogen accumulation between is-land cotton and upland cotton[J]. Cotton Science, 2018, 30(2): 164-171.
doi: 10.11963/1002-7807.lcyzjs.20180302 |
|
[17] |
Wang Z b, Chen J, Xing F F, et al. Response of cotton phenology to climate change on the North China Plain from 1981 to 2012[J]. Scientific Reports, 2017, 7: 6628. DOI: 10.1038/s41598-017-07056-4.
doi: 10.1038/s41598-017-07056-4 |
[18] |
Storme N, Geelen D. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms[J]. Plant Cell and Environment, 2014, 37(1): 1-18. DOI: 10.1111/pce.12142.
doi: 10.1111/pce.12142 |
[19] |
Jiang J, Zhang Z, Cao J. Pollen wall development: the associated enzymes and metabolic pathways[J]. Plant Biology, 2013, 15(2): 249-263. DOI: 10.1111/j.1438-8677.2012.00706.x.
doi: 10.1111/j.1438-8677.2012.00706.x pmid: 23252839 |
[20] | 孔祥军. 海岛棉H276A雄性不育的细胞学与分子生物学基础研究[D]. 南宁: 广西大学, 2017. |
Kong Xiangjun. Studies on cytology and molecular biology of male sterility line H276A in Gossypium barbadense[D]. Nanning: Guangxi University, 2017. | |
[21] | 李玉青, 王清连, 韦春艳,等. 棉花胞质雄性不育细胞形态学观察及生理生化特性的研究[J]. 西南农业学报, 2020, 33(1): 58-63. |
Li Yuqing, Wang Qinglian, Wei Chunyan, et al. Morphological observation and physiological and biochemical characteristics of cotton cytoplasmic male sterile cells[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(1): 58-63. | |
[22] | 袁瑞. 棉花核雄性不育系“21A”不育株及可育株花药差异蛋白质组学的研究[D]. 泰安: 山东农业大学, 2017. |
Yuan Rui. Comparative proteomic analysis of anthers from 21A genetic male-sterile line and fertile line in cotton[D]. Tai’an: Shandong Agricultural University, 2017. | |
[23] |
Zhang D, Yang L. Specification of tapetum and microsporocyte cells within the anther[J]. Current Opinion in Plant Biology, 2014, 17: 49-55. DOI: 10.1016/j.pbi.2013.11.001.
doi: 10.1016/j.pbi.2013.11.001 |
[24] |
Scott R J, Spielman M, Dickinson H G. Stamen structure and function[J]. The Plant Cell, 2004, 16(S1): S46-S60. DOI: 10. 1105/tpc.017012.
doi: 10. 1105/tpc.017012 |
[25] |
Ma J, Wei H, Song M, et al. Transcriptome profiling analysis reveals that flavonoid and ascorbate-glutathione cycle are important during anther development in upland cotton[J]. PLoS One, 2012, 7(11): e49244-e49255. DOI: 10.1371/journal.pone.0049244.
doi: 10.1371/journal.pone.0049244 |
[26] | 宋桂成, 王苗苗, 曾斌,等. 高温对棉花生殖过程的影响[J]. 核农学报, 2016, 30(2): 404-411. http://d.wanfangdata.com.cn/periodical/hnxb201602026. [2021-02-20]. |
Song Guicheng, Wang Miaomiao, Zeng Bin. The effects of high-temperature on reproductive process in upland cotton[J]. Journal of Nuclear Agricultural Sciences, 2016, 30(2): 404-411. | |
[27] | 朱骏. 转录因子MYB103调控花药发育分子机理以及绒毡层发育与功能转录调控途径的研究[D]. 上海: 上海交通大学, 2010. |
Zhu Jun. Molecular mechanism of MYB103 Regulating anther development & analysis of transcriptional regulatory pathway in tapetum development and function[D]. Shanghai: Shanghai Jiao Tong University, 2010. | |
[28] |
Ariizumi T, Toriyama K. Genetic regulation of sporopollenin synthesis and pollen exine development[J]. Annual Review of Plant Biology, 2011, 62: 437-60. DOI: 10.1146/annurev-arplant-
doi: 10.1146/annurev-arplant-042809-112312 pmid: 21275644 |
[29] |
张虹, 梁婉琪, 张大兵. 花药绒毡层细胞程序性死亡研究进展[J]. 上海交通大学学报(农业科学版), 2008, 26(1): 86-90. DOI: CNKI:SUN:SHNX.0.2008-01-021.
doi: CNKI:SUN:SHNX.0 |
Zhang Hong, Liang Wanqi, Zhang Dabing. Research progress on tapetum programmed cell death[J]. Journal of Shanghai Jiao Tong University (Agricultural Science), 2008, 26(1): 86-90.
doi: CNKI:SUN:SHNX.0 |
|
[30] |
刘伟华, 邱博, 罗红兵. 花药绒毡层发育和花粉母细胞减数分裂相关基因研究进展[J]. 作物研究, 2015, 29(3): 311-316, 320. DOI: 10.3969/j.issn.1001-5280.2015.03.23.
doi: 10.3969/j.issn.1001-5280.2015.03.23 |
Liu Weihua, Qiu Bo, Luo Hongbing. Advances in genes related to tapetum development and microsporocyte meiosis in anther[J]. Corp Research, 2015, 29(3): 311-316, 320.
doi: 10.3969/j.issn.1001-5280.2015.03.23 |
|
[31] |
Yu Y J, Wu L J, Wu Y J,et al. The damaging effects of nitrogen ion beam implantation on upland cotton (Gossypium hirsutum L.) pollen grains[J]. Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms, 2008, 266(18): 3959-3967. DOI: 10.1016/j.nimb.2008.06.036.
doi: 10.1016/j.nimb.2008.06.036 |
[32] | 宋桂成, 王苗苗, 陈全战,等. 陆地棉花器官耐高温性的评价指标研究[J]. 棉花学报, 2015, 27(6): 495-505. |
Song Guicheng, Wang Miaomiao, Chen Quanzhan, et al. Evaluation of the high-temperature tolerance of floral organs in upland cotton (Gossypium hirsutum L.)[J]. Cotton Science, 2015, 27(6): 495-505. | |
[33] | 刘少卿. 特棉S-1花药发育的细胞学观察以及温度对棉花花粉萌发和花粉管生长的影响[D]. 长沙: 湖南农业大学, 2007. |
Liu Shaoqin. Cytological study on anther development of Temian S-1 and the effect of temperature on cotton pollen germination and tube growth[D]. Changsha: Hunan Agricultural University, 2007. | |
[34] | 杨书华. 陆地棉花粉管通道形成时期与标记DNA导入的研究[D]. 扬州: 扬州大学, 2006. http://d.wanfangdata.com.cn/thesis/Y927629[2021-02-21]. |
Yang Shuhua. Study on the formation of pollen tube pathway and the introduction of exogenous DNA on upland cotton[D]. Yangzhou: Yangzhou University, 2006. | |
[35] |
Wu Y L, Min L, Wu Z, et al. Defective pollen wall contributes to male sterility in the male sterile line 1355A of cotton[J]. Scientific Reports, 2015, 5: 9608-9616. DOI: 10.1038/srep09608.
doi: 10.1038/srep09608 |
[1] | 张李鹏,张石定,许鹏,李现常,张震,范森淼,龚举武,袁有禄,商海红,邹华文. 傅里叶变换红外显微光谱(Micro-FTIR)和X射线衍射(XRD)用于测定棉花结晶度效果比较[J]. 棉花学报, 2020, 32(4): 370-380. |
[2] | 马麒,宁新柱,李吉莲,陈红,余渝,林海. 基于表型和SSR标记筛选海岛棉优异种质资源[J]. 棉花学报, 2020, 32(2): 91-101. |
[3] | 李玉霞,曲延英,艾海提·艾合买提,王慧敏,黄启秀,陈琴,陈全家. 通过GbF3'H基因单独沉默及其与GbCHI和GbDFR基因共沉默研究其在海岛棉中抗枯萎病功能[J]. 棉花学报, 2020, 32(1): 1-10. |
[4] | 张松雨,王敬敬,刘正文,张艳,杨君,马峙英,王省芬. 四倍体棉花GAE基因家族的鉴定及其在棉纤维发育中的表达分析[J]. 棉花学报, 2019, 31(3): 169-181. |
[5] | 李春艳 , 石洪亮, 文如意, 严青青 , 张巨松. 海岛棉和陆地棉花铃期光合特性及氮素累积特性的差异[J]. 棉花学报, 2018, 30(2): 164-171. |
[6] | 许琦, 武林琳, 王咪, 李晓萍, 郭文治, 裴蕾. 抗黄萎病海岛棉叶片在大丽轮枝菌胁迫下的蛋白组学分析[J]. 棉花学报, 2017, 29(6): 533-540. |
[7] | 倪志勇, 加得拉·吐留汗, 邱迎风, 曲延英, 陈全家. 海岛棉GbWRKY40基因的克隆及特征分析[J]. 棉花学报, 2017, 29(4): 393-400. |
[8] | 郭家雁, 张霞, 丁喜莲, 李娟, 邓莉, 陈全家, 孙国清, 曲延英. 不同处理诱导新海16号体细胞胚胎同步化发生[J]. 棉花学报, 2017, 29(4): 385-392. |
[9] | 马麒,宿俊吉,李吉莲,宁新柱,刘萍,陈红,林海,邓福军. |
[10] | 李月, 代培红, 刘超, 苏秀娟, 孔丽颖, 李翔, 李才运, 刘晓东. 海岛棉5个CBF/DREB基因的克隆与表达分析[J]. 棉花学报, 2016, 28(1): 42-51. |
[11] | 闫曼曼, 郑剑超, 张巨松, 田立文, 郭仁松, 林涛, 石洪亮. 蕾期调亏灌溉对海岛棉棉铃发育及产量的影响[J]. 棉花学报, 2015, 27(4): 354-361. |
[12] | 马玲玲, 魏延宏, 何兰兰, 柴蒙亮, 朱华国, 孙杰, 张薇. 基因枪介导的海岛棉(Gossypium barbadense L.)茎尖遗传转化体系的建立[J]. 棉花学报, 2014, 26(3): 213-220. |
[13] | 张艳, 丁泽国, 王省芬, 张桂荣, 李志坤, 张桂寅, 吴立强, 马峙英. 黄萎病菌诱导海岛棉全长cDNA文库构建及EST分析[J]. 棉花学报, 2014, 26(3): 274-278. |
[14] | 马留军, 石玉真, 兰孟焦, 杨泽茂, 张金凤, 张保才, 李俊文, 王 涛, 龚举武, 刘爱英, 商海红, 巩万奎, 袁有禄. 棉花陆海染色体片段代换系群体纤维产量与品质表现的评价[J]. 棉花学报, 2013, 25(6): 486-495. |
[15] | 马 麒, 宿俊吉, 陈 红, 邓福军. 利用海岛棉染色体片段置换系改良新陆早45号纤维品质性状的研究[J]. 棉花学报, 2013, 25(6): 496-502. |
|