棉花学报 ›› 2021, Vol. 33 ›› Issue (3): 189-199.doi: 10.11963/1002-7807.xyjysx.20210512
• 研究与进展 • 下一篇
薛羽君(),魏恒玲,王寒涛,马亮,程帅帅,郝蓬勃,顾丽姣,付小康,芦建华,喻树迅*(
)
收稿日期:
2019-11-08
发布日期:
2021-06-01
通讯作者:
喻树迅
E-mail:469608034@qq.com;ysx195311@163.com
作者简介:
薛羽君(1992―),女,硕士研究生, 基金资助:
Xue Yujun(),Wei Hengling,Wang Hantao,Ma Liang,Cheng Shuaishuai,Hao Pengbo,Gu Lijiao,Fu Xiaokang,Lu Jianhua,Yu Shuxun*(
)
Received:
2019-11-08
Published:
2021-06-01
Contact:
Yu Shuxun
E-mail:469608034@qq.com;ysx195311@163.com
摘要:
【目的】本研究旨在探索棉花GhWRN基因在生长发育中的功能。【方法】用生物信息学方法分析GhWRN基因的结构特征、进化关系及上游1 500 bp的启动子片段并对其功能进行初步分析,利用实时荧光定量-聚合酶链式反应(Quantitative real-time polymerase chain reaction,qRT-PCR)技术分析该基因在不同熟性棉花品种、不同组织及不同激素处理下的表达特性。构建过表达载体转化拟南芥,观察转基因拟南芥的表型。利用qRT-PCR分析拟南芥开花信号途径中标记基因的表达变化。【结果】以陆地棉cDNA为模板克隆得到GhWRN基因,生物信息学分析表明该基因编码产物含有1个保守的WRN-exo结构域,无内含子,不具有跨膜结构,为非分泌蛋白。qRT-PCR表明该基因在早熟棉花品种的二叶期开始上调表达,在植株各组织中均有表达,在雄蕊和苞片表达量较高;外源激素ABA、IAA处理后0.5 h该基因极显著上调表达。与野生型相比转基因拟南芥开花时间提前,莲座叶数量减少,qRT-PCR分析表明花发育相关关键基因AtSOC1、AtFT和AtFUL上调表达。【结论】GhWRN基因与促进植物开花相关,为进一步探究棉花的开花机制提供新线索。
薛羽君,魏恒玲,王寒涛,马亮,程帅帅,郝蓬勃,顾丽姣,付小康,芦建华,喻树迅. 棉花核酸外切酶基因GhWRN的克隆及功能验证[J]. 棉花学报, 2021, 33(3): 189-199.
Xue Yujun,Wei Hengling,Wang Hantao,Ma Liang,Cheng Shuaishuai,Hao Pengbo,Gu Lijiao,Fu Xiaokang,Lu Jianhua,Yu Shuxun. Cloning and functional analysis of an exonuclease response gene GhWRN in cotton (Gossypium hirsutum L.)[J]. Cotton Science, 2021, 33(3): 189-199.
表1
本研究中使用的引物"
引物名称 Primer names | 引物序列 Primer sequences |
GhWRN-F | ATGGAGATCTCAGTGGAGAAGA |
GhWRN-R | GGCCATCAAACTCCATAACCAA |
qRT-PCR-F | GTTACGGCCTCCTCGAGTTTCC |
qRT-PCR-R | GAGGCTTGTAAAGGTCGGGGTC |
GhHistone 3-F | TCAAGACTGACTGATTTGCGTTT |
GhHistone 3-R | GCGCAAAGGGTTGGTGTCTTC |
AtFT-F | CAAGAGTTGAGATTGGTGGAG |
AtFT-R | TACACTGTTTGCCTGCCA |
AtSOC1-F | TCAGTGCTTTGTGATGCTG |
AtSOC1-R | CCTTCTCCCAAGAGTTTACG |
AtAP1-F | CTCTGTTCTCTGTGATGCTGA |
AtAP1-R | CCAAGATAATGCCTCTGGTT |
AtFUL-F | TTGCAAGATCACAACAATTCGCTTCT |
AtFUL-R | GAGAGTTTGGTTCCGTCAACGACGAT |
At35S-F | CCGGAAACCTCCTCGGATTC |
Atactin 2-F | TTCCTCATGCCATCCTCCGTCTT |
Atactin 2-R | CAGCGATACCTGAGAACATAGTGG |
表2
GhWRN基因启动子调控元件预测"
元件名称 Element | 位置 Locus | 核心序列 Core sequences | 功能 Function |
ABRE | 1416(+)/1415 (-) /1413 (-) | ACGTG/CACGTG /GACACGTGGC | ABA响应元件 cis-acting element involved in the abscisic acid responsiveness |
ARE | 1367 (+)/521 (-) | AAACCA | 厌氧感应元件 cis-acting regulatory element essential for the anaerobic induction |
MBS | 1137 (-) | CAACTG | 参与干旱诱导的MYB结合位点 MYB binding site involved in drought-inducibility |
AuxRR-core | 735 (+) | GGTCCAT | 生长素响应元件 cis-acting regulatory element involved in auxin responsiveness |
TGA-element | 1256 (+)/475 (+) | AACGAC | 生长素响应元件 Auxin-responsive element |
G-Box | 1415 (-) | CACGTG | 光响应相关元件 cis-acting regulatory element involved in light responsiveness |
G-box | 1414 (-) | CACGTG/ ACACGTGT | 光响应相关元件 cis-acting regulatory element involved in light responsiveness |
GT1-motif | 1041 (-)/2 (+) | GGTTAA | 光响应元件 Light responsive element |
TCCC-motif | 1433 (+) | TCTCCCT | 部分光响应元件 Part of a light responsive element |
GATA-motif | 1390 (-) | GATAGGG | 部分光响应元件 Part of a light responsive element |
Box 4 | 97 (+) | ATTAAT | 参与光反应部分DNA保守区 Part of a conserved DNA module involved in light responsiveness |
MRE | 1043 (+)/173 (+) /630 (-) | AACCTAA | 参与光响应的MYB结合位点 MYB binding site involved in light responsiveness |
TCA-element | 1468 (-) | TCAGAAGAGG | 水杨酸响应元件 cis-acting element involved in salicylic acid responsiveness |
TC-rich repeats | 232 (-) | ATTCTCTAAC | 防御及应激响应元件 cis-acting element involved in defense and stress responsiveness |
[1] |
隋文婷, 张欣欣. 核酸酶参与高等植物体内生理活动的研究[J]. 基因组学与应用生物学. 2018, 37(7): 3056-3059. DOI: 10.13417/j.gab.037.003056.
doi: 10.13417/j.gab.037.003056 |
Sui Wenting, Zhang Xinxin. Research on the involvement of nuclease in physiological activities in higher plants[J]. Genomics and Applied Biology, 2018, 37(7): 3056-3059.
doi: 10.13417/j.gab.037.003056 |
|
[2] |
Reha-Krantz L J. DNA polymerase proofreading: multiple roles maintain genome stability[J]. Biochimca et Biophysica Acta, 2010, 1804(5): 1049-1063. DOI: 10.1016/j.bbapap.2009.06.012.
doi: 10.1016/j.bbapap.2009.06.012 |
[3] |
Shen B, Singh P, Liu R, et al. Multiple but dissectible functions of FEN-1 nucleases in nucleic acid processing, genome stability and diseases[J]. Bioessays, 2005, 27(7): 717-729. DOI: 10.1002/bies.20255.
doi: 10.1002/bies.20255 |
[4] |
Kao H I, Bambara R A. The protein components and mechanism of eukaryotic Okazaki fragment maturation[J]. Critical Reviews in Biochemistry and Molecular Biologycrit, 2003, 38(5): 433-452. DOI: 10.1080/10409230390259382.
doi: 10.1080/10409230390259382 |
[5] |
Ito J, Fukuda H. ZEN1 is a key enzyme in the degradation of nuclear DNA during programmed cell death of tracheary elements[J]. The Plant Cell, 2002, 14(12): 3201-3211. DOI: 10.1105/tpc.006411.
doi: 10.1105/tpc.006411 |
[6] |
Chen H M, Pang Y, Zeng J, et al. The Ca2+-dependent DNases are involved in secondary xylem development in Eucommia ulmoides[J]. Journal of Integrative Plant Biology, 2012, 54(7): 456-470. DOI: 10.1111/j.1744-7909.2012.01134.x.
doi: 10.1111/j.1744-7909.2012.01134.x. |
[7] |
Hématy K, Bellec Y, Podicheti R, et al. The zinc-finger protein SOP1 is required for a subset of the nuclear exosome functions in Arabidopsis[J/OL]. PLoS Genetics, 2016, 12(2): e1005817.(2016-02-01)[2019-11-01]. https://doi.org/10.1371/journal.pgen.1005817.
doi: https://doi.org/10.1371/journal.pgen.1005817 |
[8] |
Lombardi L, Ceccarelli N, Picciarelli P, et al. DNA degradation during programmed cell death in Phaseolus coccineus suspensor[J]. Plant Physiology and Biochemistry, 2007, 45(3/4): 221-227. DOI: 10.1016/j.plaphy.2007.01.014.
doi: 10.1016/j.plaphy.2007.01.014 |
[9] |
Reverdatto S V, Dutko J A, Chekanova J A, et al. mRNA deadenylation by PARN is essential for embryogenesis in higher plants[J]. RNA, 2004, 10(8): 1200-1214. DOI: 10.1261/rna.7540204.
doi: 10.1261/rna.7540204 pmid: 15247430 |
[10] |
Siwaszek A, Ukleja M, Dziembowski A. Proteins involved in the degradation of cytoplasmic mRNA in the major eukaryotic model systems[J]. RNA Biology, 2014, 11(9): 1122-1136. DOI: 10.4161/rna.34406.
doi: 10.4161/rna.34406 |
[11] | 刘璞. 拟南芥中DNase和RNase的预测及功能分析[D]. 泰安: 山东农业大学, 2016. |
Liu Pu. Genome-wide identification and function analysis of DNase and RNase genes in Arabidopsis[D]. Tai’an: Shandong Agricultural University, 2016. | |
[12] |
Muramoto Y, Watanabe A, Nakamura T, et al. Enhanced expression of a nuclease gene in leaves of barley plants under salt stress[J]. Gene, 1999, 234(2): 315-321. DOI: 10.1016/s0378-1119(99)00193-6.
doi: 10.1016/s0378-1119(99)00193-6 pmid: 10395904 |
[13] |
Merret R, Nagarajan V K, Carpentier M C, et al. Heat-induced ribosome pausing triggers mRNA co-translational decay in Arabidopsis thaliana[J]. Nucleic Acids Research, 2015, 43(8): 4121-4132. DOI: 10.1093/nar/gkv234.
doi: 10.1093/nar/gkv234 pmid: 25845591 |
[14] |
Reis R S, Hart-Smith G, Eamens A L, et al. MicroRNA regulatory mechanisms play different roles in Arabidopsis[J]. Journal of Proteome Research, 2015, 14(11): 4743-4751. DOI: 10.1021/acs. jproteome.5b00616.
doi: 10.1021/acs. jproteome.5b00616 |
[15] |
Cheng S, Chen P, Su Z, et al. High-resolution temporal dynamic transcriptome landscape reveals a GhCAL-mediated flowering regulatory pathway in cotton (Gossypium hirsutum L.)[J]. Plant Biotechnol Journal, 2021, 19(1) : 153-166. DOI: 10.1111/pbi.13449.
doi: 10.1111/pbi.13449 |
[16] |
Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. The Plant Journal, 1998, 16(6): 735-743. DOI: 10.1046/j.1365-313x.1998.00343.x.
doi: 10.1046/j.1365-313x.1998.00343.x. |
[17] |
胡根海, 喻树迅. 利用改良的CTAB法提取棉花叶片总RNA[J]. 棉花学报, 2007, 19(1): 69-70. DOI: 10.3969/j.issn.1002-7807.2007.01.014.
doi: 10.3969/j.issn.1002-7807.2007.01.014 |
Hu Genhai, Yu Shuxun. Extraction of high quality total RNA in cotton leaf with improved CTAB method[J]. Cotton Science, 2007, 19(1): 69-70.
doi: 10.3969/j.issn.1002-7807.2007.01.014 |
|
[18] |
Afrin S, Zhu J, Cao H, et al. Molecular cloning and expression profile of an abiotic stress and hormone responsive MYB transcription factor gene from Panax ginseng[J]. Acta Biochimica et Biophysica Sinica, 2015, 47(4): 267-277. DOI: 10.1093/abbs/gmv012.
doi: 10.1093/abbs/gmv012 |
[19] |
Zhang T, Hu Y, Jiang W, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement[J]. Nature Biotechnology, 2015, 33(5): 531-537. DOI: 10. 1038/nbt.3207.
doi: 10. 1038/nbt.3207 |
[20] |
Smith D W, Han M R, Park J S, et al. Crystal structure of the protein from Arabidopsis thaliana gene At5g06450, a putative DnaQ-like exonuclease domain-containing protein with homohexameric assembly[J]. Proteins, 2013, 81(9): 1669-1675. DOI: 10.1002/prot.24315.
doi: 10.1002/prot.24315 |
[21] | 张文香. 陆地棉开花相关基因GhMADS22/23/29的克隆与功能验证[D]. 北京: 中国农业科学院, 2013. |
Zhang Wengxiang. Molecular cloning and function analysis of flowering-related genes from Gossypium hirsutum L[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. | |
[22] |
Perry J J, Yannone S M, Holden L G, et al. WRN exonuclease structure and molecular mechanism imply an editing role in DNA end processing[J]. Nature Structural & Molecular Biology, 2006, 13(5): 414-422. DOI: 10.1038/nsmb1088.
doi: 10.1038/nsmb1088 |
[23] |
Gu H T, Wang D H, Li X, et al. Characterization of an ethylene-inducible, calcium-dependent nuclease that is differentially expressed in cucumber flower development[J]. The New Phytologist, 2011, 192(3): 590-600. DOI: 10.1111/j.1469-8137.2011.03825.x.
doi: 10.1111/j.1469-8137.2011.03825.x. |
[24] |
You M K, Shin H Y, Kim Y J, et al. Novel bifunctional nucleases, OmBBD and AtBBD1, are involved in abscisic acid-mediated callose deposition in Arabidopsis[J]. Plant Physiology, 2010, 152(2): 1015-1029. DOI: 10.1104/pp.109.147645.
doi: 10.1104/pp.109.147645 |
[25] |
Ferrándiz C, Gu Q, Martienssen R, et al. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER[J]. Development, 2000, 127(4): 725-734.
pmid: 10648231 |
[26] |
Kempin S A, Savidge B, Yanofsky M F. Molecular basis of the cauliflower phenotype in Arabidopsis[J]. Science, 1995, 267(5197): 522-525. DOI: 10.1126/science.7824951.
doi: 10.1126/science.7824951 pmid: 7824951 |
[27] |
Smykal P, Gennen J, De Bodt S, et al. Flowering of strict photoperiodic Nicotiana varieties in non-inductive conditions by transgenic approaches[J]. Plant Molecular Biology, 2007, 65(3): 233-242. DOI: 10.1007 /s11103-007-9211-6.
doi: 10.1007 /s11103-007-9211-6 pmid: 17660946 |
[28] |
张盼, 范术丽, 宋美珍,等. 陆地棉开花相关基因GhFLP1的克隆与功能验证[J]. 棉花学报, 2016, 28(3): 199-207. DOI: 10.11963/issn.1002-7807.201603002.
doi: 10.11963/issn.1002-7807.201603002 |
Zhang Pan, Fan Shuli, Song Meizhen, et al. Cloning and functional analysis of the flowering-related gene GhFLP1 from upland cotton (Gossypium hirsutum L.)[J]. Cotton Science, 2016, 28(3): 199-207.
doi: 10.11963/issn.1002-7807.201603002 |
[1] | 姜辉,郑锦秀,王永翠,张超,王秀丽,陈莹,高明伟,王家宝,柴启超,赵军胜. 陆地棉L-D1等位基因特异性分子标记的开发及应用[J]. 棉花学报, 2021, 33(5): 412-421. |
[2] | 卞英杰,王寒涛,魏恒玲,张蒙,李弈,喻树迅. 陆地棉叶片发育相关基因GhRH39克隆与功能分析[J]. 棉花学报, 2021, 33(4): 319-327. |
[3] | 程成,李斌,王雅丽,赵楠,苏莹,聂虎帅,华金平. 转FBP7::iaaM基因陆地棉育种应用初报[J]. 棉花学报, 2021, 33(4): 368-376. |
[4] | 徐鹏,郭琪,徐珍珍,孟珊,陈天子,沈新莲. 基于重测序鉴定SbHKT基因在陆地棉基因组中的插入位点[J]. 棉花学报, 2021, 33(4): 377-383. |
[5] | 吕丽敏, 左东云, 王省芬, 张友平, 程海亮, 王巧连, 宋国立, 马峙英. 陆地棉纤维发育相关基因GhEXPs的分析及表达研究[J]. 棉花学报, 2021, 33(3): 280-290. |
[6] | 石荣康,张冬梅,孙正文,刘正文,解美霞,张艳,马峙英,王省芬. 陆地棉REM基因家族全基因组鉴定及表达分析[J]. 棉花学报, 2021, 33(2): 95-111. |
[7] | 窦玲玲,孙亚如,赵琴,田瑞洁,康洋洋,朱怡然,杨蕾蕾,王彩虹,冯宇,王文博,肖光辉. 陆地棉Nudix基因家族的全基因组鉴定及表达分析[J]. 棉花学报, 2021, 33(2): 112-123. |
[8] | 贾晓昀,王士杰,赵红霞,朱继杰,李妙,王国印. 陆地棉株型及生育期相关性状QTL定位[J]. 棉花学报, 2021, 33(2): 124-133. |
[9] | 郭晓豪,王寒涛,魏鑫,张晶晶,付小康,马亮,魏恒玲,喻树迅. 基于两个陆地棉低世代群体定位纤维品质相关QTL[J]. 棉花学报, 2021, 33(1): 33-42. |
[10] | 刘佩佩,魏喜,陈艳丽,王晔,张桂寅,李付广. 脱落酸对棉花体细胞胚胎发生的影响[J]. 棉花学报, 2021, 33(1): 42-53. |
[11] | 李雨哲,邢淋雪,刘梦洁,刘苏瑶,鲍梦楠,刘震. 棉花苯丙氨酸解氨酶基因家族的生物信息学分析[J]. 棉花学报, 2021, 33(1): 66-74. |
[12] | 张爱,王彩香,宿俊吉,张先亮,史春辉,刘娟娟,彭云玲,马雄风. 陆地棉MADS-box家族基因鉴定及组织特异性表达分析[J]. 棉花学报, 2020, 32(5): 404-404. |
[13] | 琚龙贞,赵汀,方磊,胡艳,张天真. 陆地棉Dof基因家族的全基因组鉴定及分析[J]. 棉花学报, 2020, 32(4): 279-291. |
[14] | 赵鹏,张帅,赵晨晨,胡方梅,崔金杰,李绍勤. 斜纹夜蛾表皮蛋白基因克隆及表达谱分析[J]. 棉花学报, 2020, 32(4): 292-304. |
[15] | 杨永飞,葛常伟,沈倩,张思平,刘绍东,马慧娟,陈静,刘瑞华,李士丛,赵新华,李志坤,庞朝友. 陆地棉苗期低温响应基因GhZAT10的克隆及功能研究[J]. 棉花学报, 2020, 32(4): 305-315. |
|