棉花学报 ›› 2021, Vol. 33 ›› Issue (3): 200-208.doi: 10.11963/1002-7807.wlzbm.20210312
王林1(),张强1,马江锋1,朱玉永1,田英1,李红1,毕显杰1,宋敏1,王海标1,雷天翔1,李召虎2,田晓莉2,杜明伟2,张立祯2,赵冰梅1,*(
)
收稿日期:
2020-03-24
发布日期:
2021-06-01
通讯作者:
赵冰梅
E-mail:wlseed@126.com;zbingmei@163.com
作者简介:
王林(1963―),男, 基金资助:
Wang Lin1(),Zhang Qiang1,Ma Jiangfeng1,Zhu Yuyong1,Tian Ying1,Li Hong1,Bi Xianjie1,Song Min1,Wang Haibiao1,Lei Tianxiang1,Li Zhaohu2,Tian Xiaoli2,Du Mingwei2,Zhang Lizhen2,Zhao Bingmei1,*(
)
Received:
2020-03-24
Published:
2021-06-01
Contact:
Zhao Bingmei
E-mail:wlseed@126.com;zbingmei@163.com
摘要:
【目的】明确植保无人机喷施棉花脱叶催熟剂田间作业现状、作业效果,为构建新疆生产建设兵团棉花脱叶催熟剂喷施作业技术体系以及无人机在棉花脱叶催熟作业中的推广应用提供依据。【方法】以市场主流无人机对比喷杆喷雾机进行田间试验,评价和分析不同作业区棉花脱叶和吐絮效果。【结果】药后22 d,无人机两次施药的棉花脱叶率在82.2%~92.1%,吐絮率在85.8%~100%,脱叶效果显著好于地面喷杆喷雾机一次顶喷施药,催熟效果差异不大;不同无人机以及同一无人机不同作业区,对棉花的脱叶催熟效果不同,无人机喷雾施药的8个作业区中,仅有1个能同时满足兵团棉花机械采收对脱叶率和吐絮率的要求。无人机部分施药作业中存在作业参数选择不当、作业不规范以及因无人机自身设备性能未达最优而导致的药液喷施不均匀、漏喷等现象。【结论】采用无人机喷施棉花脱叶催熟剂施药技术有待进一步优化完善。
王林,张强,马江锋,朱玉永,田英,李红,毕显杰,宋敏,王海标,雷天翔,李召虎,田晓莉,杜明伟,张立祯,赵冰梅. 新疆棉区植保无人机喷施棉花脱叶催熟剂效果研究[J]. 棉花学报, 2021, 33(3): 200-208.
Wang Lin,Zhang Qiang,Ma Jiangfeng,Zhu Yuyong,Tian Ying,Li Hong,Bi Xianjie,Song Min,Wang Haibiao,Lei Tianxiang,Li Zhaohu,Tian Xiaoli,Du Mingwei,Zhang Lizhen,Zhao Bingmei. Study on the effect of spraying cotton defoliant by plant protection UAVs in Xinjiang cotton area[J]. Cotton Science, 2021, 33(3): 200-208.
表1
参试药械及作业区基础信息"
棉花品种 Cotton cultivars | 施药器械 Sprayer type | 作业区编号 Working area No. | 单株叶片数 Number of leaves per plant | 单株铃数 Number of bolls per plant | 吐絮率 Boll opening rate /% | 株高 Plant height / cm |
天佐42 | 约翰迪尔 R4023 John Deere R4023 | 1 | 50.6 | 11.4 | 12.0 | 83.5 |
蜂巢 3WW-10B Beehive 3WW-10B | 2 | 27.9 | 9.9 | 32.8 | 61.1 | |
大疆T16 Dji T16 | 3 | 25.6 | 6.7 | 49.7 | 53.9 | |
4 | 38.7 | 8.9 | 6.7 | 77.3 | ||
极飞P30 XAG P30 | 5 | 32.6 | 8.2 | 28.9 | 68.3 | |
中棉109 | 极飞P30 XAG P30 | 6 | 43.0 | 9.2 | 6.5 | 83.9 |
约翰迪尔 P4023 John Deere R4023 | 7 | 27.4 | 6.4 | 8.5 | 88.5 | |
极飞P30 XAG P30 | 8 | 33.0 | 8.6 | 4.8 | 92.4 | |
蜂巢 3WW-10B Beehive 3WW-10B | 9 | 38.6 | 7.7 | 11.1 | 75.6 | |
大疆T16 Dji T16 | 10 | 46.5 | 11.1 | 11.8 | 90.9 |
表2
施药方案"
施药器械 Sprayer type | 有效剂量 Effective dosage /(g·hm-2) | |||||||
第一次施药(9月7日) The first spraying (Sept.7) | 第二次施药(9月15日) The second spraying (Sept.15) | |||||||
540 g·L-1噻苯·敌草隆 SC Thidiazuron dimethipin 540 g·L-1 SC | 280 g·L-1烷基乙基磺酸盐SL An-idnic surfactant 280 g·L-1 SL | 40%乙烯利AS 40% ethephon AS | 飞防助剂 Adjuvant for aviation plant protection | 540 g·L-1噻苯·敌草隆SC Thidiazuron dimethipin 540 g·L-1 SC | 280 g·L-1烷基乙基磺酸盐SL An-idnic surfactant 280 g·L-1 SL | 40%乙烯利AS 40% ethephon AS | ||
约翰迪尔 R4023 John Deere R4023 | 270 | 1 080 | 1 200 | / | / | / | / | |
蜂巢 3WW-10B Beehive 3WW-10B | 225 | 900 | 600 | / | 195 | 780 | 600 | |
大疆 T16 Dji T16 | 225 | 900 | 600 | 150 | 195 | 780 | 600 | |
极飞 P30 XAG P30 | 225 | 900 | 600 | 150 | 195 | 780 | 600 |
表3
喷施作业参数"
施药器械 Sprayer type | 工作压力 Working pressure / Pa | 作业高度 Working height /m | 作业速度 Working speed /(km·h-1) | 喷幅 Single spraying swath /m | 施药液量 Spraying volume /(L·hm-2) |
约翰迪尔 R4023 John Deere R4023 | 800 | 0.3 | 7.0 | 25.0 | 450.0 |
蜂巢 3WW-10B Beehive 3WW-10B | / | 1.8 | 4.5 | 3.5 | 30.0 |
大疆T16 Dji T16 | / | 2.0 | 5.0 | 5.0 | 18.0~19.5 |
极飞P30 XAG P30 | / | 2.1 | 5.0 | 3.5 | 15.0±1.5 |
表4
收获辅助剂施药器械对棉花脱叶效果的影响"
施药器械 Sprayer type | 作业区 编号Working area No. | 棉花品种 Cotton cultivars | 药前吐絮率 Boll opening rate before spraying /% | 脱叶率 Defoliation rate /% | ||
施药后7 d 7 d after spraying | 施药后15 d 15 d after spraying | 施药后22 d 22 d after spraying | ||||
约翰迪尔R4023 John Deere R4023 | 1 | 天佐42 | (12.0±6.3) c | (41.3±6.3) a | (68.5±3.1) bc | (73.4±6.3) b |
7 | 中棉109 | (8.5±3.3) c | (36.2±7.4) a | (65.7±2.9) c | (73.9±2.4) b | |
蜂巢3WW-10B Beehive 3WW-10B | 2 | 天佐42 | (32.8±7.1) b | (25.8±4.6) a | (74.1±5.1) abc | (82.2±3.0) ab |
9 | 中棉109 | (11.1±8.9) c | (24.8±6.1) a | (80.0±4.1) abc | (88.8±2.9) a | |
大疆T16 Dji T16 | 3 | 天佐42 | (49.7±5.5) a | (38.4±4.1) a | (80.3±2.5) ab | (88.4±2.3) a |
4 | (6.7±1.7) c | (45.0±11.4) a | (75.6±2.7) abc | (85.3±1.6) a | ||
10 | 中棉109 | (11.8±1.3) c | (27.8±5.5) a | (80.0±3.4) abc | (88.5±3.3) a | |
极飞 P30 XAG P30 | 5 | 天佐42 | (28.9±5.4) b | (46.0±3.0) a | (85.3±6.2) a | (92.1±3.6) a |
6 | 中棉109 | (6.5±3.8) c | (30.5±7.6) a | (87.6±3.7) a | (91.7±1.8) a | |
8 | (4.8±4.8) c | (20.8±10.5) a | (81.2±3.3) ab | (85.6±3.6) a |
表6
收获辅助剂施药器械对棉花吐絮动态的影响"
施药器械 sprayer type | 作业区编号Working area No. | 棉花品种 Cotton cultivars | 吐絮率 Boll opening rate /% | |||
施药前 Before spraying | 施药后7 d 7 d after spraying | 施药后15 d 15 d after spraying | 施药后22 d 22 d after spraying | |||
约翰迪尔R4023 John Deere R4023 | 1 | 天佐42 | (12.0±6.3) c | (15.6±1.2) d | (70.6±4.7) cd | (93.5±3.6) ab |
7 | 中棉109 | (8.5±3.3) c | (30.2±6.5) cd | (85.4±4.7) abc | (100.0±0.0) a | |
蜂巢3WW-10B Beehive 3WW-10B | 2 | 天佐42 | (32.8±7.1) b | (51.3±7.2) b | (86.5±3.2) abc | (98.3±0.6) a |
9 | 中棉109 | (11.1±8.9) c | (22.9±7.2) d | (62.6±6.3) d | (95.0±2.5) ab | |
大疆T16 Dji T16 | 3 | 天佐42 | (49.7±5.5) a | (71.5±6.4) a | (96.0±2.2) a | (100±0.0) a |
4 | (6.7±1.7) c | (16.4±4.6) d | (59.1±9.8) d | (85.8±6.2) b | ||
10 | 中棉109 | (11.8±1.3) c | (26.1±2.8) cd | (69.5±8.9) cd | (93.5±4.4) ab | |
极飞 P30 XAG P30 | 5 | 天佐42 | (28.9±5.4) b | (44.5±6.7) bc | (91.6±2.2) ab | (96.3±0.5) ab |
6 | 中棉109 | (6.5±3.8) c | (21.3±3.4) d | (72.2±5.4) bcd | (92.0±3.5) ab | |
8 | (4.8±4.8) c | (15.0±12.3) d | (59.8±9.4) d | (93.0±5.0) ab |
表7
收获辅助剂施药器械雾滴沉积分布均匀性"
作业区 编号 Working area No. | 施药器械 Sprayer type | 第一次施药The first spraying | 第二次施药The second spraying | |||||
平均雾滴密度 Average droplet density /cm-2 | 标准差 Standard deviation /cm-2 | 变异系数Coefficient of variation /% | 平均雾滴密度 Average droplet density /cm-2 | 标准差 Standard deviation /cm-2 | 变异系数Coefficient of variation /% | |||
7 | 约翰迪尔R4023* John Deere R4023 | - | - | - | - | - | - | |
8 | 极飞 P30 XAG P30 | 16.4 | 7.4 | 45.1 | 4.9 | 1.9 | 39.1 | |
9 | 蜂巢3WW-10B Beehive 3WW-10B | 23.6 | 7.3 | 59.2 | 12.9 | 1.6 | 13.2 | |
10 | 大疆T16 Dji T16 | 20.4 | 8.4 | 41.2 | 4.7 | 1.0 | 21.2 |
[1] |
Suttle J C. Involvement of ethylene in the action of the cotton defoliant thidiazuron[J]. Plant Physiology, 1985, 78(2): 272-276. DOI: 10.1104/pp.78.2.272.
doi: 10.1104/pp.78.2.272 pmid: 16664229 |
[2] |
周婷婷, 肖庆刚, 杜睿,等. 我国棉花脱叶催熟技术研究进展[J]. 棉花学报, 2020, 32(2): 170-184. DOI: 10.11963/1002-7807.ztthxq.20200303.
doi: 10.11963/1002-7807.ztthxq.20200303 |
Zhou Tingting, Xiao Qinggang, Du Rui, et al. Research advances on cotton harvest aids in China[J]. Cotton Science, 2020, 32(2):170-184.
doi: 10.11963/1002-7807.ztthxq.20200303 |
|
[3] |
陈学庚, 赵岩. 新疆兵团农业机械化现状与发展趋势[J]. 华东交通大学学报, 2015, 32(2): 1-7. DOI: 10.16749/j.cnki.jecjtu.2015.02.018.
doi: 10.16749/j.cnki.jecjtu.2015.02.018 |
Chen Xuegeng, Zhao Yan. Current situation and development trend of agricultural mechanization in Xinjiang Corps[J]. Journal of East China Jiaotong University, 2015, 32(2): 1-7.
doi: 10.16749/j.cnki.jecjtu.2015.02.018 |
|
[4] |
兰玉彬, 陈盛德, 邓继忠,等. 中国植保无人机发展形势及问题分析[J]. 华南农业大学学报, 2019, 40(5): 217-225. DOI: 10.7671/j.issn.1001-411X.201905082.
doi: 10.7671/j.issn.1001-411X.201905082 |
Lan Yubin, Chen Shengde, Deng Jizhong, et al. Development situation and problem analysis of plant protection unmanned aerial vehicle in China[J]. Journal of South China Agricultural University, 2019, 40(5): 217-225.
doi: 10.7671/j.issn.1001-411X.201905082 |
|
[5] |
马艳, 任相亮, 蒙艳华,等. 无人植保机在新疆棉田喷施脱叶剂测试结果评述[J]. 中国棉花, 2016, 43(12): 16-20. DOI: 10.11963/issn.1000-632X.201612004.
doi: 10.11963/issn.1000-632X.201612004 |
Ma Yan, Ren Xiangliang, Meng Yanhua, et al. Review on result of spraying defoliant by unmanned aerial vehicles in cotton field of Xinjiang[J]. China Cotton, 2016, 43(12): 16-20.
doi: 10.11963/issn.1000-632X.201612004 |
|
[6] |
王喆, 冯宏祖, 王兰,等. MG-1S 型无人机喷施不同棉花脱叶剂的田间效果对比[J]. 中国棉花, 2018, 45(1): 27-28, 46. DOI: 10.11963/1000-632X.wzwl.2018011.
doi: 10.11963/1000-632X.wzwl.2018011 |
Wang Zhe, Feng Hongzu, Wang Lan, et al. Effects comparison of different defoliants applied by Dajiang MG-1S unmanned air vehicle in cotton field[J]. China Cotton, 2018, 45(1): 27-28, 46.
doi: 10.11963/1000-632X.wzwl.2018011 |
|
[7] |
胡红岩, 任相亮, 马小艳,等. 无人机喷施噻苯隆·敌草隆对棉花的脱叶催熟效果[J]. 中国棉花, 2018, 45(6): 21-23, 39. DOI: 10.11963/1000-632X.hhymy.20180612.
doi: 10.11963/1000-632X.hhymy.20180612 |
Hu Hongyan, Ren Xiangliang, Ma Xiaoyan, et al. Effects of thidiazuron-diuron applied by unmanned air vehicle on cotton[J]. China Cotton, 2018, 45(6): 21-23, 39.
doi: 10.11963/1000-632X.hhymy.20180612 |
|
[8] | 张坤朋, 邓喜军, 王朝阳. 无人机喷洒不同棉花催熟、脱叶复合药剂效果研究[J]. 农药, 2017, 56(8): 619-623. |
Zhang Kunpeng, Deng Xijun, Wang Chaoyang. Effects of different composite chemicals on cotton ripening and defoliation sprayed by UAV[J]. Agrochemicals, 2017, 56(8): 619-623. | |
[9] |
Xin F, Zhao J, Zhou Y T, et al. Effects of dosage and spraying volume on cotton defoliants efficacy: a case study based on application of unmanned aerial vehicles[J]. Agronomy, 2018, 8(6): 85.
doi: 10.3390/agronomy8060085 |
[10] |
胡红岩, 任相亮, 马小艳,等. 无人机喷施与人工喷施棉花脱叶剂效果对比[J]. 中国棉花, 2018, 45(7): 13-15, 19. DOI: 10.11963/1000-632X.hhymy.2018071.
doi: 10.11963/1000-632X.hhymy.2018071 |
Hu Hongyan, Ren Xiangliang, Ma Xiaoyan, et al. Comparison of defoliation effects between unmanned air vehicle spraying and artificial spraying in cotton field[J]. China Cotton, 2018, 45(7): 13-15, 19.
doi: 10.11963/1000-632X.hhymy.2018071 |
|
[11] | 文纯杰, 杨炬仁, 韩军,等. 植保无人机与机动车喷施棉花脱叶剂效果对比[J]. 农村科技, 2018(3): 26-27. |
Wen Chunjie, Yang Juren, Han Jun, et al. Comparison of effects of plant protection drones and motor vehicle spraying defoliants[J]. Rural Science & Technology, 2018(3): 26-27. | |
[12] |
胡红岩, 任相亮, 马小艳,等. 棉花脱叶剂的植保无人机喷施技术[J]. 中国棉花, 2018, 45(11): 43-44. DOI: 10.11963/1000-632X.hhymy.20181115.
doi: 10.11963/1000-632X.hhymy.20181115 |
Hu Hongyan, Ren Xiangliang, Ma Xiaoyan, et al. Spraying technology of cotton defoliant by plant protection unmanned aerial vehicle[J]. China Cotton, 2018, 45(11): 43-44.
doi: 10.11963/1000-632X.hhymy.20181115 |
|
[13] |
蒙艳华, 兰玉彬, 梁自静,等. 无人机施药液量对棉花脱叶效果的影响[J]. 中国棉花, 2019, 46(6): 10-15. DOI: 10.11963/1000-632X.myhlyb.20190611.
doi: 10.11963/1000-632X.myhlyb.20190611 |
Meng Yanhua, Lan Yubin, Liang Zijing, et al. Impact of spraying volume on defoliation efficacy by unmanned aerial vehicle[J]. China Cotton, 2019, 46(6): 10-15.
doi: 10.11963/1000-632X.myhlyb.20190611 |
|
[14] |
Xiao Q G, Xin F, Lou Z X, et al. Effect of aviation spray adjuvants on defoliant droplet deposition and cotton defoliation efficacy sprayed by unmanned aerial vehicles[J]. Agronomy, 2019, 9: 217.
doi: 10.3390/agronomy9050217 |
[15] |
Meng Y H, Song J L, Lan Y B, et al. Harvest aids efficacy applied by unmanned aerial vehicles on cotton crop[J]. Industrial Crops and Products, 2019, 140: 111645.
doi: 10.1016/j.indcrop.2019.111645 |
[16] |
张煜, 杜睿, 肖庆刚,等. d-柠檬烯助剂对棉花脱叶催熟剂的增效作用[J]. 石河子大学学报(自然科学版), 2020, 38(3): 1-7. DOI: 10.13880/j.cnki.65-1174/n.2020.23.018.
doi: 10.13880/j.cnki.65-1174/n.2020.23.018 |
Zhang yu, Du rui, Xiao qinggang, et al. Synergism of d-limonene on cotton harvest aids[J]. Journal of Shihezi University (Natural Science), 2020, 38(3): 1-7.
doi: 10.13880/j.cnki.65-1174/n.2020.23.018 |
|
[17] | 赵冰梅, 张强, 朱玉永,等. 多旋翼植保无人机在棉蚜防治中的应用效果[J]. 中国植保导刊, 2017, 37(2): 61-63. |
Zhao Bingmei, Zhang Qiang, Zhu Yuyong, et al. The application effect of multi-rotor plant protection UAV for controlling cotton aphids[J]. China Plant Protection, 2017, 37(2): 61-63. | |
[18] |
宋兴虎, 徐东永, 孙璐,等. 在不同棉区噻苯隆和乙烯利用量及配比对脱叶催熟效果影响[J]. 棉花学报, 2020, 32(2): 247-257. DOI: 10.11963/1002-7807.ztthxq.20200303.
doi: 10.11963/1002-7807.ztthxq.20200303 |
Song Xinghu, Xu Dongyong, Sun Lu, et al. Effect of thidiazuron and ethylene use and ratio on defoliation ripening in different cotton area[J]. Cotton Science, 2020, 32(2): 247-257.
doi: 10.11963/1002-7807.ztthxq.20200303 |
|
[19] | 袁会珠, 王国宾. 雾滴大小和覆盖密度与农药防治效果的关系[J]. 植物保护, 2015, 41(6): 9-16. |
Yuan Huizhu, Wang Guobin. Effects of droplet size and deposition density on field efficacy of pesticides[J]. Plant Protection, 2015, 41(6): 9-16. | |
[20] |
何雄奎. 我国植保无人机喷雾系统与施药技术[J]. 农业工程技术, 2018, 38(9): 33-38. DOI: 10.16815/j.cnki.11-5436/s.2018.09.006
doi: 10.16815/j.cnki.11-5436/s.2018.09.006 |
He Xiongkui. Plant protection UAV spray system and application technology in China[J]. Agricultural Engineering Technology, 2018, 38(9): 33-38.
doi: 10.16815/j.cnki.11-5436/s.2018.09.006 |
|
[21] |
朱传银, 王秉玺. 航空喷雾植保技术的发展与探讨[J]. 植物保护, 2014, 40(5): 1-7. DOI: 10.3969/j.issn.0529-1542.2014.05.001.
doi: 10.3969/j.issn.0529-1542.2014.05.001 |
Zhu Chuanyin, Wang Bingxi. Development and discussion of aerial spray technologyin plant protection[J]. Plant Protection, 2014, 40(5): 1-7.
doi: 10.3969/j.issn.0529-1542.2014.05.001 |
|
[22] | 袁会珠, 薛新宇, 闫晓静, 植保无人飞机低空低容量喷雾技术应用与展望[J]. 植物保护, 2018, 44(5): 152-158. |
Yuan Huizhu, Xue Xinyu, Yan Xiaojing, et al. Applications and prospects in the unmanned aerial system for low-altitude and low-volume spray in crop protection[J]. Plant Protection, 2018, 44(5): 152-158. | |
[23] |
陈盛德, 兰玉彬, 李继宇,等. 植保无人机航空喷施作业有效喷幅的评定与试验[J]. 农业工程学报, 2017(7): 82-90. DOI: 10.11975/j.issn.1002-6819.2017.07.011.
doi: 10.11975/j.issn.1002-6819.2017.07.011 |
Chen Shengde, Lan Yubin, Li Jiyu, et al. Evaluation and test of effective spraying width of aerial spraying on plant protection UAV[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(7): 82-90.
doi: 10.11975/j.issn.1002-6819.2017.07.011 |
|
[24] | 林正平, 洪峰, 刘鹤,等. 浅析影响植保无人机作业效果的主要因素[J]. 中国植保导刊, 2019, 39(4): 70-72, 85. |
Lin Zhengping, Hong Feng, Liu He, et al. Major influencing factors on efficiency of plant protection UAV[J]. China Plant Protection, 2019, 39(4): 70-72, 85. | |
[25] |
田志伟, 薛新宇, 李林,等. 植保无人机施药技术研究现状与展望[J]. 中国农机化学报, 2019, 40(1): 37-45. DOI: 10.13733/j.jcam.issn.2095-5553.2019.01.08.
doi: 10.13733/j.jcam.issn.2095-5553.2019.01.08 |
Tian Zhiwei, Xue Xinyu, Li Lin, et al. Research status and prospects of spraying technology of plant protection unmanned aerial vehicle[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(1): 37-45.
doi: 10.13733/j.jcam.issn.2095-5553.2019.01.08 |
|
[26] | 韦全生, 张益忠. 机采棉发展概况及存在的问题[J]. 中国棉花加工, 2003(5): 33-34. |
Wei Quansheng, Zhang Yizhong. Development situation and existing problems of machine-picked cotton[J]. Cotton Processing in China, 2003(5): 33-34. |
[1] | 李鸣凤,彭文勇,何华,刘新伟,赵竹青. 外施不同形态硼对棉花吸收利用硼及其他矿质元素的影响[J]. 棉花学报, 2021, 33(5): 385-392. |
[2] | 王燕,张谦,王树林,韩硕,冯国艺,董明,钱玉源,祁虹. 耕层重构对棉田土壤养分、微生物数量与酶活性的影响[J]. 棉花学报, 2021, 33(5): 422-434. |
[3] | 张岚,程琦,梁士辰,邓雨潇,潘玉欣. 棉花UGPase基因鉴定与生物信息学分析[J]. 棉花学报, 2021, 33(4): 337-346. |
[4] | 马怡茹,吕新,祁亚琴,张泽,易翔,陈翔宇,鄢天荥,侯彤瑜. 基于无人机数码图像的机采棉脱叶率监测模型构建[J]. 棉花学报, 2021, 33(4): 347-359. |
[5] | 苟浩琦,马常凯,张迁,范术丽,马启峰,张朝军. 棉花光敏雄性不育系psm5的培育及其育性转变规律[J]. 棉花学报, 2021, 33(4): 360-367. |
[6] | 王金刚, 姜艳, 田甜, 朱永琪, 杨振康, 周天航, 张文旭, 佟炫梦, 孙嘉祺, 王海江. 减氮配施生物刺激素对棉花产量及氮肥吸收利用的影响[J]. 棉花学报, 2021, 33(3): 209-223. |
[7] | 易翔, 张立福, 吕新, 张泽, 田敏, 印彩霞, 马怡茹, 范向龙. 基于无人机高光谱融合连续投影算法估算棉花地上部生物量[J]. 棉花学报, 2021, 33(3): 224-234. |
[8] | 孙璘, 海艳, 唐晓雪, 祖丽皮亚·艾买, 焦瑞莲, 任毓忠, 李国英. 新疆棉花茎腐病的病原鉴定及其生物学特性研究[J]. 棉花学报, 2021, 33(3): 235-246. |
[9] | 党文芳, 刘萍, 管力慧, 杨红梅, 牛新湘, 李萍, 楚敏, 娄恺, 史应武. 土壤环境因子对棉花根际与内生拮抗细菌存活数量的影响[J]. 棉花学报, 2021, 33(3): 247-257. |
[10] | 杨可心, 陈秀叶, 刘畅, 鹿秀云, 郭庆港, 马平. 棉花枯萎病菌新生理型菌株毒素鉴定及其活性测定[J]. 棉花学报, 2021, 33(3): 258-268. |
[11] | 安杰,韩迎春,张正贵,冯璐,雷亚平,杨北方,王国平,李小飞,王占彪,邢芳芳,熊世武,辛明华,李亚兵. 不同熟性棉花品种冠层温度分布特点[J]. 棉花学报, 2021, 33(2): 134-143. |
[12] | 孟浩峰,雷长英,张旺锋,张亚黎. 系统调控下棉花比叶重的变化机制[J]. 棉花学报, 2021, 33(2): 144-154. |
[13] | 张友昌,黄晓莉,胡爱兵,李洪菊,冯常辉,李蔚,张贤红,罗艳萍,杨国正. 长江流域麦/油后直播棉花播种时间下限研究[J]. 棉花学报, 2021, 33(2): 155-168. |
[14] | 王广恩,郭丽,钱玉源,刘祎,张曦. 不同咸水利用方式对棉花叶绿素荧光参数及土壤盐分的影响[J]. 棉花学报, 2021, 33(1): 13-21. |
[15] | 郁凯,霍钰阳,朱俊俊,陈兵林,汤秋香. 盐胁迫下施钾调节棉纤维断裂比强度的糖代谢机制[J]. 棉花学报, 2021, 33(1): 22-32. |
|