棉花学报 ›› 2021, Vol. 33 ›› Issue (3): 209-223.doi: 10.11963/1002-7807.wjgwhj.20210331
王金刚(),姜艳,田甜,朱永琪,杨振康,周天航,张文旭,佟炫梦,孙嘉祺,王海江*(
)
收稿日期:
2020-10-19
发布日期:
2021-06-02
通讯作者:
王海江
E-mail:1274680853@qq.com;wanghaijiang@shzu.edu.cn
作者简介:
王金刚(1995―),男,在读博士, 基金资助:
Wang Jingang(),Jiang Yan,Tian Tian,Zhu Yongqi,Yang Zhenkang,Zhou Tianhang,Zhang Wengxu,Tong Xuanmeng,Sun Jiaqi,Wang Haijiang*(
)
Received:
2020-10-19
Published:
2021-06-02
Contact:
Wang Haijiang
E-mail:1274680853@qq.com;wanghaijiang@shzu.edu.cn
摘要:
【目的】花生产中氮肥施用过量现象普遍存在。研究减氮配施不同生物刺激素黄腐酸(Fulvic acid,简称F)、壳聚糖(Chitosan,简称C)、海藻酸(Alginic acid,简称A)对棉花的生长发育及其氮素利用的影响,旨在为棉田氮素优化管理和减氮增效提供理论依据。【方法】设置棉花大田氮肥常规施用量(360 kg·hm-2,N1)、减量20%(288 kg·hm-2,N0.8)和减量40%(216 kg·hm-2,N0.6)叶面配施生物刺激素(不施刺激素0 g·kg-1,S0;黄腐酸0.12 g·kg-1,F;壳聚糖0.1 g·kg-1,C;海藻酸0.24 g·kg-1,A),分析棉花干物质积累量、叶绿素含量、可溶性蛋白含量、根系形态,收获期棉花产量、氮肥吸收总量及利用效率。【结果】适量减氮配施壳聚糖、黄腐酸和海藻酸均可促进棉花的生长,提高产量和收获期氮肥利用效率。其中,减氮40%配施壳聚糖(N0.6C)处理下棉花株高、干物质积累量、叶绿素含量、可溶性蛋白含量、产量及氮肥吸收总量均最高。初花期至盛铃期,减氮40%配施壳聚糖(N0.6C)处理的棉铃可溶性蛋白含量较N0.6S0提高41.39%,铃数、铃重和单株籽棉产量分别为7.85、6.79 g和46.47 g,较N0.6S0显著提高19.33%、25.60%和58.87%;减氮40%配施壳聚糖(N0.6C)处理在棉花收获期氮肥吸收总量最大,为10.28 g,较N0.6S0显著提高193.71%,氮肥偏生产力、氮肥农学效率、氮肥表观利用率分别较N0.6S0提高38.76%、116.45%、88.60%。减氮20%配施黄腐酸(N0.8F)对根系形态改善幅度最大,其处理的棉株根表面积、根长度、根体积、平均直径、根尖数、分支数分别为263.91 cm2、183.58 mm、0.21 mm3、0.39 cm、4 073和4 842,分别较N0.8S0提高了63.56%、28.96%、305.74%、103.22%、100.16%、105.69%。减氮20%配施海藻酸(N0.8A)较 N0.8S0显著增加棉花铃重和铃数,提高籽棉产量和氮肥利用效率。【结论】适量减氮配施壳聚糖、黄腐酸和海藻酸促进棉花株高、叶绿素含量,协调各营养器官干物质量和可溶性蛋白向铃转运,促进成熟期氮肥积累,增加铃重和铃数,提高产量和氮肥利用效率。
王金刚,姜艳,田甜,朱永琪,杨振康,周天航,张文旭,佟炫梦,孙嘉祺,王海江. 减氮配施生物刺激素对棉花产量及氮肥吸收利用的影响[J]. 棉花学报, 2021, 33(3): 209-223.
Wang Jingang,Jiang Yan,Tian Tian,Zhu Yongqi,Yang Zhenkang,Zhou Tianhang,Zhang Wengxu,Tong Xuanmeng,Sun Jiaqi,Wang Haijiang. Effects of nitrogen reduction combined with biostimulants on cotton yield and nitrogen absorption and utilization[J]. Cotton Science, 2021, 33(3): 209-223.
表1
试验土壤基本性质"
年份 Year | pH | 电导率 Conductivity/(ms·cm-1) | 有机质含量 Organic matter content/ (mg·kg-1) | 全氮含量 Total N content/ (mg·kg-1) | 速效氮含量 Available N content/ (mg·kg-1) | 速效钾含量 Available K content/ (mg·kg-1) | 速效磷含量 Available P content/ (mg·kg-1) |
2018 | 7.73 | 2.15 | 11.5 | 732 | 94.2 | 232 | 19.2 |
2019 | 7.51 | 2.11 | 11.2 | 890 | 97.6 | 262 | 18.6 |
表2
减氮配施刺激素试验设计"
处理 Treatment | 氮素 Nitrogen /(kg·hm-2) | 黄腐酸 Fulvic acid /(g·kg-1) | 壳聚糖 Chitosan /(g·kg-1) | 海藻酸 Alginic acid /(g·kg-1) |
N0S0 | 0 | 0 | 0 | 0 |
N0.6S0 | 216 | 0 | 0 | 0 |
N0.8S0 | 288 | 0 | 0 | 0 |
N1S0 | 360 | 0 | 0 | 0 |
N0F | 0 | 0.12 | 0 | 0 |
N0.6F | 216 | 0.12 | 0 | 0 |
N0.8F | 288 | 0.12 | 0 | 0 |
N1F | 360 | 0.12 | 0 | 0 |
N0C | 0 | 0 | 0.1 | 0 |
N0.6C | 216 | 0 | 0.1 | 0 |
N0.8C | 288 | 0 | 0.1 | 0 |
N1C | 360 | 0 | 0.1 | 0 |
N0A | 0 | 0 | 0 | 0.24 |
N0.6A | 216 | 0 | 0 | 0.24 |
N0.8A | 288 | 0 | 0 | 0.24 |
N1A | 360 | 0 | 0 | 0.24 |
表3
棉花叶绿素含量"
处理Treatment | 初花期 Initial flowering stage | 盛铃期 Peak boll-setting stage | ||||||||
L1 | L2 | L3 | L4 | L1 | L2 | L3 | L4 | |||
N0 | S0 | 1.75 iB | 2.02 hA | 2.07 gA | 2.11 hA | 1.12 gD | 1.41 hC | 1.52 gB | 1.59 hA | |
F | 2.07 gB | 2.26 fB | 2.42 gB | 2.63 efA | 1.56 dB | 1.58 ghB | 1.93 fAB | 1.97 gA | ||
C | 2.30 cdeC | 2.52 deBC | 2.84 cdB | 3.32 bcA | 1.77 dC | 1.92 fgC | 2.03 cdeA | 2.26 fgA | ||
A | 2.10 efgB | 2.32 efA | 2.64 dAB | 2.74 fA | 1.67 dB | 1.78 gB | 1.84 efB | 2.16 gA | ||
N0.6 | S0 | 1.85 hC | 2.19 gAB | 2.26 gA | 2.35 gA | 1.25 fC | 1.81 fgAB | 1.95 fA | 1.94 gA | |
F | 2.38 bA | 2.74 cdB | 2.80 cB | 3.02 gC | 2.18 cC | 2.59 defAB | 2.61 cdfB | 2.83 cdeA | ||
C | 2.52 deB | 3.01 bAB | 3.26 bcAB | 3.40 bA | 2.42 abB | 2.87 abA | 3.06 aA | 3.28 aA | ||
A | 2.41 fB | 2.84 deA | 3.05 dA | 3.24 dA | 2.23 bcB | 2.64 deB | 2.93 abcA | 3.00 cdA | ||
N0.8 | S0 | 1.95 fB | 2.35 fgAB | 2.49 eA | 2.71 fgA | 1.46 eC | 1.97 fAB | 2.06 efA | 2.25 gA | |
F | 2.41 cdB | 2.93 cdA | 3.19 defC | 3.53 cdA | 2.35 bcB | 2.52 cdAB | 3.09 abAB | 3.15 bcA | ||
C | 2.76 aB | 3.30 aB | 3.50 aB | 3.93 aA | 2.87 aB | 3.15 bcB | 3.46 aAB | 3.75 aA | ||
A | 2.45 bB | 2.96 bcC | 3.17 abB | 3.47 aA | 2.65 bcB | 2.86 aBC | 3.37 abAB | 3.56 aA | ||
N1 | S0 | 1.93 fC | 2.29 gB | 2.38 efA | 2.65 gA | 1.42 eC | 1.82 fgAB | 2.03 efA | 2.12 gA | |
F | 2.26 cdB | 2.56 cdB | 2.743 bcA | 3.06 bcA | 2.50 bcB | 2.29 fB | 2.70 bA | 2.58 defA | ||
C | 2.54 bA | 2.88 cB | 2.97 abA | 3.25 aA | 2.31 cB | 2.58 defB | 2.95 abcAB | 3.12 bcA | ||
A | 2.36 cdeC | 2.63 cdC | 2.79 abcB | 3.11 bA | 2.30 abcC | 2.47 efB | 2.66 cdAB | 2.87 cdeA | ||
方差分析 Variance Analysis(F) | ||||||||||
S | ** | ** | ** | ** | ** | ** | ** | ** | ||
N | ** | ** | ** | ** | ** | ** | ** | ** | ||
S*N | ** | ** | ** | ** | ** | ** | ** | ** |
表4
棉花不同器官可溶性蛋白含量"
处理Treatment | 初花期 Initial flowering stage | 盛铃期 Peak boll-setting stage | ||||||||
叶 Leaf | 茎 Stem | 根 Root | 铃 Boll | 叶 Leaf | 茎 Stem | 根 Root | 铃 Boll | |||
N0 | S0 | 16.12 dA | 9.26 fC | 9.99 eBC | 10.86 kB | 10.97 gB | 8.80 eC | 10.33 fB | 15.27 hA | |
F | 17.99 bcA | 14.21 cC | 15.13 cB | 15.67 fghB | 15.35 dB | 13.34 cC | 15.00 cdB | 20.59 efA | ||
C | 18.64 abA | 14.53 cC | 15.51 bcB | 15.96 efgB | 15.91 cdB | 13.59 cC | 15.74 bcB | 21.22 eA | ||
A | 17.22 bcdA | 14.14 cB | 13.25 dC | 14.56 ghiB | 14.64 deB | 12.04 dC | 12. 98 eC | 19.88 efA | ||
N0.6 | S0 | 16.88 cdA | 11.02 eC | 12.23 dB | 12.75 jB | 12.92 fB | 11.61 dC | 12.75 eB | 18.99 fgA | |
F | 18.52 abcA | 14.61 bcC | 15.47 bcB | 15.67 fghB | 16.96 bcB | 14.16 bcC | 16.56 abB | 24.52 cdA | ||
C | 19.65 aA | 16.58 aC | 15.88 bcD | 18.28 abAB | 18.95 aB | 15.92 aD | 17.16 abC | 26.85 abA | ||
A | 18.06 bcA | 14.31 cdeD | 15.26 bcC | 16.68 defB | 16.82 bcB | 14.35 bcC | 16.10 bcB | 23.24 dA | ||
N0.8 | S0 | 18.71 abA | 12.54 dC | 12.95 dC | 14.29 hiB | 13.51 efB | 12.04 dC | 13.98 deB | 19.11 fgA | |
F | 19.23 aA | 15.48 abcC | 15.25 bcC | 18.14 abcB | 17.26 abB | 14.96 abC | 17.07 abB | 25.23 bcdA | ||
C | 19.26 aA | 15.90 abC | 17.23 aB | 19.14 aA | 18.29 abB | 15.82 aC | 17.92 aB | 27.29 aA | ||
A | 19.20 aA | 14.95 bcD | 15.87 bcC | 17.56 bcdB | 16.90 bcB | 14.95 abC | 16.31 bcB | 26.14 acdA | ||
N1 | S0 | 19.16 aA | 11.95 deD | 12.58 dC | 13.94 ijB | 13.09 fB | 11.58 dC | 12.89 eB | 17.45 gA | |
F | 18.51 abcB | 14.97 bcdE | 15.11 cDE | 16.85 defCD | 17.67 abB | 14.32 bcE | 16.38 bcCD | 25.14 bcdA | ||
C | 18.98 abA | 15.08 bcD | 16.56 abC | 17.25 cdeB | 17.97 abB | 14.43 bcD | 16.98 abC | 25.74 abcA | ||
A | 18.05 bcA | 14.92 bcC | 15.64 bcC | 16.29 defB | 16.85 bcB | 14.47 bcC | 16.23 bcB | 24.27 cdA | ||
方差分析 Variance Analysis(F) | ||||||||||
S | ** | ** | ** | ** | ** | ** | ** | ** | ||
N | ** | ** | ** | ** | ** | ** | ** | ** | ||
S*N | ** | ** | ** | ** | ** | ** | ** | ** |
表5
减氮配施生物刺激素对棉花产量及构成因子的影响"
处理 Treatment | 铃数 Number of buds | 铃重 Single boll weight/g | 单株籽棉产量 Seed cotton yield per plant/g | |
N0 | S0 | 5.04±0.25 h | 5.07±0.25 g | 25.79±1.29 h |
F | 6.12±0.31 fg | 5.82±0.29 def | 29.88±1.49 fg | |
C | 7.32±0.37 abc | 6.29±0.31 bcd | 30.11±1.51 fg | |
A | 5.76±0.29 g | 5.52±0.28 fg | 28.99±1.45 g | |
N0.6 | S0 | 6.25±0.31 fg | 5.69±0.28 ef | 29.25±1.46 g |
F | 6.72±0.34 de | 5.86±0.29 cde | 37.97±1.90 cd | |
C | 7.85±0.39 a | 6.79±0.34 a | 46.47±2.32 a | |
A | 6.66±0.33 def | 5.71±0.29 ef | 35.67±1.78 de | |
N0.8 | S0 | 6.36±0.32 efg | 5.67±0.28 ef | 33.69±1.68 e |
F | 7.08±0.35 bcd | 6.17±0.31 bcd | 42.18±2.11 b | |
C | 6.96±0.35 cde | 6.55±0.33 ab | 40.58±2.03 bc | |
A | 6.72±0.34 de | 6.08±0.30 cde | 39.11±1.96 bc | |
N1 | S0 | 6.24±0.31 fg | 5.54±0.28 fg | 32.93±1.65 ef |
F | 6.96±0.35 cde | 5.97±0.30 cde | 39.58±1.98 bc | |
C | 7.44±0.37 ab | 6.41±0.32 abc | 42.02±2.10 b | |
A | 6.62±0.33 def | 5.78±0.29 def | 38.45±1.92 cd | |
方差分析 Variance Analysis(F) | ||||
S | ** | ** | ** | |
N | ** | ** | ** | |
S*N | ** | ** | ** |
表6
减氮配施生物刺激素对棉花产量及构成因子的影响"
理 Treatment | 收获期氮肥吸收总量 Total N uptake at Maturiation stage/g | 氮肥偏生产力 Partial factor productivity from applied N/(kg·kg-1) | 氮肥农学效率 Agronomic efficiency of applied N/(kg·kg-1) | 氮肥表观利用率 Recovery efficiency of applied N/% | |
N0 | S0 | 2.69±0.13 h | |||
F | 4.36±0.22 f | ||||
C | 4.81±0.24 ef | ||||
A | 4.50±0.23 ef | ||||
N0.6 | S0 | 3.50±0.18 g | 36.56±1.83 d | 9.18±0.46 g | 29.83±1.49 fg |
F | 5.08±0.25 e | 44.58±2.23 bc | 14.81±0.74 d | 47.03±2.35 c | |
C | 10.28±0.51 a | 50.73±2.54 a | 19.87±0.99 a | 56.26±2.81 a | |
A | 4.87±0.24 ef | 43.57±2.18 c | 13.09±0.65 ef | 45.48±2.27 c | |
N0.8 | S0 | 4.56±0.23 ef | 31.58±1.58 e | 9.26±0.46 g | 33.81±1.69 e |
F | 7.65±0.38 b | 39.54±1.98 d | 16.17±0.81 c | 48.36±2.42 c | |
C | 7.06±0.35 c | 47.46±2.37 b | 17.66±0.88 b | 52.16±2.61 b | |
A | 7.31±0.37 bc | 36.67±1.83 d | 14.20±0.71 de | 40.07±2.00 d | |
N1 | S0 | 3.60±0.18 g | 22.45±1.12 f | 8.01±0.40 h | 26.49±1.32 g |
F | 7.71±0.39 b | 29.68±1.48 e | 12.95±0.65 ef | 30.87±1.54 ef | |
C | 10.28±0.32 a | 31.52±1.58 e | 13.66±0.68 de | 32.60±1.63 ef | |
A | 6.49±0.19 d | 28.84±1.44 e | 11.88±0.59 f | 29.19±1.46 fg | |
方差分析 Variance Analysis(F) | |||||
S | ** | ** | ** | ** | |
N | ** | ** | ** | ** | |
S*N | ** | ** | ** | ** |
[1] |
李新华, 巩前文. 从“增量增产”到“减量增效”:农户施肥调控政策演变及走向[J]. 农业现代化研究, 2016, 37(5): 877-884. DOI: 10.13872/j.1000-0275.2016.0069.
doi: 10.13872/j.1000-0275.2016.0069 |
Li Xinhua, Gong Qianwen. From "incremental increase in production" to "reduction and increase in efficiency": the evolution and trend of farmers' fertilization control policies[J]. Research of Agricultural Modernization, 2016, 37(5): 877-884.
doi: 10.13872/j.1000-0275.2016.0069 |
|
[2] |
李慧, 万华龙, 田立文,等. 晚播增密对棉花群体光合及干物质积累与分配的影响[J]. 棉花学报, 2020, 32(4): 339-347. DOI: 10.11963/1002-7807. lhlcd.20200622.
doi: 10.11963/1002-7807. lhlcd.20200622 |
Li Hui, Wan Hualong, Tian Liwen, et al. The effects of late sowing and densification on cotton population photosynthesis and dry matter accumulation and distribution[J]. Cotton Science, 2020, 32(4): 339-347.
doi: 10.11963/1002-7807. lhlcd.20200622 |
|
[3] |
赵立新, 侯发东, 吕正超,等. 基于迁移学习的棉花叶部病虫害图像识别[J]. 农业工程学报, 2020, 36(7): 184-191. DOI: 10.11975/j.issn.1002-6819.2020.07.021.
doi: 10.11975/j.issn.1002-6819.2020.07.021 |
Zhao Lixin, Hou Fadong, Lu Zhengchao, et al. Image recognition of cotton leaf diseases and insect pests based on transfer learning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(7): 184-191.
doi: 10.11975/j.issn.1002-6819.2020.07.021 |
|
[4] |
牛聪聪, 耿国明, 于雷,等. 尿素配施木霉菌剂提高甜瓜产量、品质及土壤微生物功能多样性[J]. 植物营养与肥料学报, 2019, 25(4): 620-629. DOI: 10.11674/zwyf.18137.
doi: 10.11674/zwyf.18137 |
Niu Congcong, Geng Guoming, Yu Lei, et al. Reducing fertilizer input combined with application of trichoderma to increase yield, quality of melon and soil microbial functional diversity[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 620-629.
doi: 10.11674/zwyf.18137 |
|
[5] |
徐云连, 吴靓, 吴蔚君,等. 施氮对小麦产量和氮素径流损失及氮肥投入阈值的研究[J]. 水土保持学报, 2018, 32(2): 246-251. DOI: 10.13870/j.cnki.stbcxb.2018.02.036.
doi: 10.13870/j.cnki.stbcxb.2018.02.036 |
Xu Yunlian, Wu Liang, Wu Weijun, et al. Effects of nitrogen application on wheat yield and runoff loss of nitrogen and application threshold of nitrogen fertilizer[J]. Journal of Soil and Water Conservation, 2018, 32(2): 246-251.
doi: 10.13870/j.cnki.stbcxb.2018.02.036 |
|
[6] |
秦宇坤, 李鹏程, 郑苍松,等. 施氮量对低肥力棉田土壤氮素及棉花养分吸收利用影响[J]. 棉花学报, 2019, 31(3): 242-253. DOI: 10.11963/1002-7807.qykxwx.20190430.
doi: 10.11963/1002-7807.qykxwx.20190430 |
Qin Yukun, Li Pengcheng, Zheng Cangsong, et al. Effects of nitrogen application rates on soil nitrogen content, nutrient uptake and utilization of cotton in low fertility fields[J]. Cotton Science, 2019, 31(3): 242-253.
doi: 10.11963/1002-7807.qykxwx.20190430 |
|
[7] |
Zhang Y, Yin H, Zhao X, et al. The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling[J]. Carbohydrate Polymers, 2014, 113: 446-454. DOI: 10.1016/j.carbpol.2014.06.079.
doi: 10.1016/j.carbpol.2014.06.079 |
[8] |
Liu D D, Jiao S M, Cheng G, et al. Identification of chitosan oligosaccharides binding proteins from the plasma membrane of wheat leaf cell[J]. International Journal of Biological Macromolecules Structure Function & Interactions, 2018, 111: 1083-1090. DOI: 10.1016/j.ijbiomac.2018.01.113.
doi: 10.1016/j.ijbiomac.2018.01.113 |
[9] |
Horinouchi H, Katsuyama N, Taguchi Y, et al. Control of Fusarium crown and root rot of tomato in a soil system by combination of a plant growth-promoting fungus, Fusarium equiseti, and biodegradable pots[J]. Crop Protection, 2008, 27(3-5): 859-864. DOI: 10.1016/j.cropro.2007.08.009.
doi: 10.1016/j.cropro.2007.08.009 |
[10] |
孙玲丽, 易年成, 段智辉,等. 腐植酸是具有中国特色的生物刺激剂[J]. 磷肥与复肥, 2017, 32(8): 22-23. DOI: 10.3969/j.issn.1007-6220.
doi: 10.3969/j.issn.1007-6220 |
Sun Lingli, Yi Nianchen, Duan Zhihui, et al. Humic acid is biological stimulants with Chinese characteristics[J]. Phosphate & Compound Fertilizer, 2017, 32(8): 22-23.
doi: 10.3969/j.issn.1007-6220 |
|
[11] |
谢尚强, 王文霞, 张付云,等. 植物生物刺激素研究进展[J]. 中国生物防治学报, 2019, 35(3): 487-496. DOI: 10.16409/j.cnki.2095-039x.2019.03.017.
doi: 10.16409/j.cnki.2095-039x.2019.03.017 |
Xie Shangqiang, Wang Wenxia, Zhang Fuyun, et al. Research progress of plant biostimulants[J]. Chinese Journal of Biological Control, 2019, 35(3): 487-496.
doi: 10.16409/j.cnki.2095-039x.2019.03.017 |
|
[12] |
刘佳欢, 王倩, 罗人杰,等. 黄腐酸肥料对小麦根际土壤微生物多样性和酶活性的影响[J]. 植物营养与肥料学报, 2019, 25(10): 1808-1816. DOI: 10.11674/zwyf.18363.
doi: 10.11674/zwyf.18363 |
Liu Jiahuan, Wang Qian, Luo Renjie, et al. Effects of fulvic acid fertilizer on microbial diversity and enzyme activity in wheat rhizosphere soil[J]. Journal of Plant Nutrition and Fertilizer, 2019, 25(10): 1808-1816.
doi: 10.11674/zwyf.18363 |
|
[13] | 谷端银. 腐植酸对氮胁迫下黄瓜生长及生理代谢的影响[D]. 泰安: 山东农业大学, 2016. |
Gu Duanyin. Effects of humic acid on cucumber growth and physiological metabolism under nitrogen stress[D]. Tai’an: Shandong Agricultural University, 2016. | |
[14] | 冯敬涛. 海藻提取物对干旱胁迫下苹果幼苗抗旱性和养分吸收的影响[D]. 泰安: 山东农业大学, 2019. |
Feng Jintao. Effect of seaweed extract on drought resistance and nutrient absorption of apple seedlings under drought stress[D]. Tai’an: Shandong Agricultural University, 2019. | |
[15] |
Rayorath P, Jithesh M N, Farid A, et al. Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L.) Le Jol. using a model plant, Arabidopsis thaliana (L.) Heynh[J]. Journal of Applied Phycology, 2008, 20(4): 423-429. DOI: 10.1007/s10811-007-9280-6.
doi: 10.1007/s10811-007-9280-6 |
[16] | 袁天佑. 减氮配施腐植酸对冬小麦夏玉米轮作系统的增产效应及机理研究[D]. 兰州: 甘肃农业大学, 2017. |
Yuan Tianyou. Study on the yield-increasing effect and mechanism of nitrogen reduction and humic acid application on winter wheat and summer corn rotation system[D]. Lanzhou: Gansu Agricultural University, 2017. | |
[17] | 田晓飞. 控释氮肥、钾肥及生物炭对棉花生长和土壤养分状况的影响[D]. 泰安: 山东农业大学, 2017. |
Tian Xiaofei. Effects of controlled-release nitrogen fertilizer, potassium fertilizer and biochar on cotton growth and soil nutrient status[D]. Tai’an: Shandong Agricultural University, 2017. | |
[18] |
赵中亭, 许向阳, 张志恒,等. 几种生物叶面肥喷施对棉花生长发育和产量的影响[J]. 棉花科学, 2018, 40(3): 20-25. DOI: 10.3969/j.issn.2095-3143.
doi: 10.3969/j.issn.2095-3143 |
Zhao Zhongting, Xu Xiangyang, Zhang Zhiheng, et al. Effects of spraying several biological foliar fertilizers on cotton growth and yield[J]. Cotton Science, 2018, 40(3): 20-25.
doi: 10.3969/j.issn.2095-3143 |
|
[19] |
崔健, 刘怀锋. 甲壳素对苹果幼苗抗旱生理效应的影响[J]. 北方园艺, 2007, 2007(11): 19-22. DOI: 10.3969/j.issn.1001-0009.2007.11.007.
doi: 10.3969/j.issn.1001-0009.2007.11.007 |
Cui Jian, Liu Huaifeng. Effects of chitin on the physiological effects of drought resistance of apple seedlings[J]. Northern Horticulture, 2007, 2007(11): 19-22.
doi: 10.3969/j.issn.1001-0009.2007.11.007 |
|
[20] |
王树林, 马立刚, 王燕,等. 黄腐酸钾定位施肥对棉花产量及品质性状的影响[J]. 安徽农业科学, 2017, 45(26): 23-24, 70. DOI: 10.13989/j.cnki.0517-6611.2017.26.007.
doi: 10.13989/j.cnki.0517-6611.2017.26.007 |
Wang Shulin, Ma Ligang, Wang Yan, et al. Effects of potassium fulvic acid fertilization on cotton yield and quality traits[J]. Journal of Anhui Agricultural Sciences, 2017, 45(26): 23-24, 70.
doi: 10.13989/j.cnki.0517-6611.2017.26.007 |
|
[21] |
廖娜, 侯振安, 李琦,等. 不同施氮水平下生物碳提高棉花产量及氮肥利用率的作用[J]. 植物营养与肥料学报, 2015, 21(3): 782-791. DOI: 10.11674/zwyf.2015.0326.
doi: 10.11674/zwyf.2015.0326 |
Liao Na, Hou Zhen’an, Li Qi, et al. Effect of bio-carbon on cotton yield and nitrogen fertilizer utilization under different nitrogen application levels[J]. Plant Nutrition and Fertilizer Science, 2015, 21 (3): 782-791.
doi: 10.11674/zwyf.2015.0326 |
|
[22] |
刘洪波, 白云岗, 张江辉,等. 喷水时长对葡萄叶片SPAD值和叶绿素含量的影响[J]. 中国农学通报, 2019, 35(12): 107-111. DOI: 10.11924/j.issn.1000-6850.casb18060095.
doi: 10.11924/j.issn.1000-6850.casb18060095 |
Liu Hongbo, Bai Yungang, Zhang Jianghui, et al. The effect of spraying time on the SPAD value and chlorophyll content of grape leaves[J]. Chinese Agricultural Science Bulletin, 2019, 35(12): 107-111.
doi: 10.11924/j.issn.1000-6850.casb18060095 |
|
[23] |
张永彬, 范玉华, 毕彩丰. 考马斯法测定棉籽蛋白发酵液中蛋白质含量[J]. 河南化工, 2011, 28(Z2): 46-49. DOI: 10.3969/j.issn.1003-3467.2011.20.014.
doi: 10.3969/j.issn.1003-3467.2011.20.014 |
Zhang Yongbing, Fan Yuhua, Bi Caifeng. Coomassie method for determination of protein content in cottonseed protein fermentation broth[J]. Henan Chemical Industry, 2011, 28 (Z2): 46-49.
doi: 10.3969/j.issn.1003-3467.2011.20.014 |
|
[24] |
王素芳, 薛惠云, 张志勇,等. 棉花根系生长与叶片衰老的协调性[J]. 作物学报, 2020, 46(1): 93-101. DOI: 10.3724/SP.J.1006.2020.94043.
doi: 10.3724/SP.J.1006.2020.94043 |
Wang Sufang, Xue Huiyun, Zhang Zhiyong, et al. Coordination between cotton root growth and leaf senescence[J]. Acta Crops Sinica, 2020, 46(1): 93-101.
doi: 10.3724/SP.J.1006.2020.94043 |
|
[25] | 鲍士旦. 土壤农化分析 (第三版)[M]. 北京: 中国农业出版社, 2000: 263-268. |
Bao Shidan. Soil and agricultural chemistry analysis (3rd.)[M]. Beijing: China Agriculture Press, 2000: 263-268. | |
[26] |
陈倩, 李秉毓, 张鑫,等. 腐植酸分次施用明显提高富士苹果产量、品质和氮素利用率[J]. 植物营养与肥料学报, 2020, 26(4): 757-764. DOI: 10.11674/zwyf.19232.
doi: 10.11674/zwyf.19232 |
Chen Qian, Li Bingyun, Zhang Xin, et al. Separate application of humic acid significantly improves the yield, quality and nitrogen utilization of Fuji apples[J]. Journal of Plant Nutrition and Fertilizer, 2020, 26(04): 757-764.
doi: 10.11674/zwyf.19232 |
|
[27] | 董志强. Bt棉氮素代谢特征与丰产性抗虫性协同表达的化学调控[D]. 北京: 中国农业大学, 2000. |
Dong Zhiqiang. Chemical control on nitrogen metabolism character and high yield expression cooperate with anti-insect quality of Bt-transgenic Cotton[D]. Beijing: China Agricultural University, 2000. | |
[28] |
Wang J H, Zhou Y J, He P, et al. Roles of mitogen-activated protein kinase pathways during Escherichia coli-induced apoptosis in U937 cells[J]. Apoptosis, 2007, 12(2): 375. DOI: 10.1007/s10495-006-0623-6.
doi: 10.1007/s10495-006-0623-6 |
[29] |
张运红, 杨占平, 郑春风,等. 几种生物刺激素对小麦产量形成及品质的调控[J]. 麦类作物学报, 2019, 39(11): 1333-1342. DOI: 10.7606/j.issn.1009-1041.2019.11.09.
doi: 10.7606/j.issn.1009-1041.2019.11.09 |
Zhang Yunhong, Yang Zhanping, Zheng Chunfeng, et al. Regulation of several biostimulants on wheat yield formation and quality[J]. Journal of Triticeae Crops, 2019, 39(11): 1333-1342.
doi: 10.7606/j.issn.1009-1041.2019.11.09 |
|
[30] | 段淑娟, 刘骏, 张草,等. 聚谷氨酸叶面肥在小麦上的应用效果研究[J]. 现代农业科技, 2019(1): 6-7. |
Duan Shujuan, Liu Jun, Zhang Cao, et al. Application effect of polyglutamic acid foliar fertilizer on wheat[J]. Modern Agricultural Science and Technology, 2019(1): 6-7. | |
[31] |
姜山, 朱启忠, 张真豪. 壳聚糖对小麦种子萌发及干旱胁迫下幼苗保护酶活性的影响[J]. 干旱地区农业研究, 2011, 29(1): 206-209, 218. DOI: 10.3969/j.issn.0439-8114.2011.07.010.
doi: 10.3969/j.issn.0439-8114.2011.07.010 |
Jiang Shan, Zhu Qizhong, Zhang Zhenhao. Effects of chitosan on wheat seed germination and protective enzyme activities of seedlings under drought stress[J]. Agricultural Research in the Arid Areas, 2011, 29(1): 206-209, 218.
doi: 10.3969/j.issn.0439-8114.2011.07.010 |
|
[32] |
刘艳丽, 丁方军, 张娟,等. 活化腐植酸-尿素施用对小麦-玉米轮作土壤氮肥利用率及其控制因素的影响[J]. 中国生态农业学报, 2016, 24(10): 1310-1319. DOI: 10.13930/j.cnki.cjea.160258.
doi: 10.13930/j.cnki.cjea.160258 |
Liu Yanli, Ding Fangjun, Zhang Juan, et al. Effects of activated humic acid-urea application on soil nitrogen use efficiency and its controlling factors in wheat-corn rotation[J]. Chinese Journal of Eco-Agriculture, 2016, 24(10): 1310-1319.
doi: 10.13930/j.cnki.cjea.160258 |
|
[33] |
魏海燕, 李宏亮, 程金秋,等. 缓释肥类型与运筹对不同穗型水稻产量的影响[J]. 作物学报, 2017, 43(5): 730-740. DOI: 10.3724/SP.J.1006.2017.00730.
doi: 10.3724/SP.J.1006.2017.00730 |
Wei Haiyan, Li Hongliang, Cheng Jinqiu, et al. Effects of slow-release fertilizer types and operations on rice yields with different panicle types[J]. Acta Agronomica Sinica, 2017, 43(5): 730-740.
doi: 10.3724/SP.J.1006.2017.00730 |
|
[34] |
Elena A, Leménager Diane, Eva B, et al. The root application of a purified leonardite humic acid modifies the transcriptional regulation of the main physiological root responses to Fe deficiency in Fe-sufficient cucumber plants[J]. Plant Physiology & Biochemistry, 2009, 47(3): 215-223. DOI: 10.1016/j.plaphy.2009.06.004.
doi: 10.1016/j.plaphy.2009.06.004 |
[35] |
Liu H, Zhang Y H, Yin H, et al. Alginate oligosaccharides enhanced Triticum aestivum L. tolerance to drought stress[J]. Plant Physiology and Biochemistry, 2013, 62(62): 33-40. DOI: 10.1016/j.plaphy.2012.10.012.
doi: 10.1016/j.plaphy.2012.10.012 |
[36] |
Wally O S D, Critchley A T, Hiltz D, et al. Regulation of phytohormone biosynthesis and accumulation in Arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum[J]. Plant Growth Regulation, 2013, 32: 324-339. DOI: 10.1007/s00344-012-9301-9.
doi: 10.1007/s00344-012-9301-9 |
[37] | 王雷山. 播期和密度对夏直播棉花氮代谢的影响[D]. 武汉: 华中农业大学, 2016. |
Wang Leishan. Effects of sowing date and density on nitrogen metabolism of summer direct seeding cotton[D]. Wuhan: Huazhong Agricultural University, 2016. | |
[38] |
Osuji G O, Cuero R G. Regulation of ammonium ion salavge and enhancement of the storage protein contents of corn, sweet potato and yam tuber by N-(carboxymethyl) chitosan application[J]. Journal of Agricultural Food Chemistry, 1992, 40(5): 724-734. DOI: 10.1021/jf00017a004.
doi: 10.1021/jf00017a004 |
[39] | 张运红. 高活性寡糖筛选及其促进植物生长的生理机制研究[D]. 武汉: 华中农业大学, 2011. |
Zhang Yunhong. Screening of highly active oligosaccharides and their physiological mechanisms for plant growth[D]. Wuhan: Huazhong Agricultural University, 2011. | |
[40] |
Kumar M, Dangayach P, Pareek N. Enhanced glucosamine production through synergistic action of Aspergillus terreus chitozymes[J]. Journal of Cleaner Production, 2020, 262: 121363. DOI: 10.1016/j.jclepro.2020.121363.
doi: 10.1016/j.jclepro.2020.121363 |
[41] |
Zhang H, Wang W, Yin H, et al. Oligochitosan induces programmed cell death in tobacco suspension cells[J]. Carbohydrate Polymers, 2012, 87(3): 2270-2278. DOI: 10.1016/j.carbpol.2011.10.059.
doi: 10.1016/j.carbpol.2011.10.059 |
[42] |
Paneque P, Caballero P, Parrado J, et al. Use of a biostimulant obtained from okara in the bioremediation of a soil polluted by used motor car oil[J]. Journal of Hazardous Materials, 2019, 389: 121820. DOI: 10.1016/j.jhazmat.2019.121820.
doi: 10.1016/j.jhazmat.2019.121820 |
[43] |
李泽丽, 刘之广, 张民,等. 控释尿素配施黄腐酸对小麦产量及土壤养分供应的影响[J]. 植物营养与肥料学报, 2018, 24(4): 959-968. DOI: 10.11674/zwyf.17426.
doi: 10.11674/zwyf.17426 |
Li Zeli, Liu Zhiguang, Zhang Min, et al. Effects of controlled-release urea combined with fulvic acid on wheat yield and soil nutrient supply[J]. Journal of Plant Nutrition and Fertilizer, 2018, 24(4): 959-968.
doi: 10.11674/zwyf.17426 |
|
[44] | 武玥. 外源5-氨基乙酰丙酸(ALA)缓解黄瓜幼苗盐胁迫的效果及机理研究[D]. 兰州: 甘肃农业大学, 2018. |
Wu Yue. Mechanisms of exogenous 5-aminolevulinic acid (ALA) on alleviating salt stress in cucumber seedlings[D]. Lanzhou: Gansu Agricultural University, 2018. | |
[45] |
张运红, 和爱玲, 杨占平,等. 海藻酸钠寡糖灌根处理对小麦光合特性、干物质积累和产量的影响[J]. 江西农业学报, 2018, 30(11): 1-5. DOI: 10.19386/j.cnki.jxnyxb.2018.11.01.
doi: 10.19386/j.cnki.jxnyxb.2018.11.01 |
Zhang Yunhong, He Ailing, Yang Zhanping, et al. Effects of root-irrigation with alginate oligosaccharide solution on photosynthetic characteristics, dry matter accumulation and yield of wheat[J]. Acta Agriculture Jiangxi, 2018, 30(11): 1-5.
doi: 10.19386/j.cnki.jxnyxb.2018.11.01 |
|
[46] |
Canellas L P, Piccolo A, Dobbss L B, et al. Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid[J]. Chemosphere, 2010, 78(4): 457-466. DOI: 10.1016/j.chemosphere.2009.10.018.
doi: 10.1016/j.chemosphere.2009.10.018 pmid: 19910019 |
[47] |
Yadav S, Sharma A, Khan M A, et al. Enhancing hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) remediation through water-dispersible microbacterium Esteraromaticum granules[J]. Journal of Environmental Management, 2020, 264: 110446. DOI: 10.1016/j.jenvman.2020.110446.
doi: 10.1016/j.jenvman.2020.110446 |
[48] |
Ziosi V, Zandoli R, Di Nardo A, et al. Biological activity of different botanical extracts as evaluated by means of an array of in vitro and in vivo bioassays[J]. Acta Horticulturae, 2013, 1009: 61-66. DOI: 10.17660/ActaHortic.2013.1009.5.
doi: 10.17660/ActaHortic.2013.1009.5 |
[1] | 李鸣凤,彭文勇,何华,刘新伟,赵竹青. 外施不同形态硼对棉花吸收利用硼及其他矿质元素的影响[J]. 棉花学报, 2021, 33(5): 385-392. |
[2] | 王燕,张谦,王树林,韩硕,冯国艺,董明,钱玉源,祁虹. 耕层重构对棉田土壤养分、微生物数量与酶活性的影响[J]. 棉花学报, 2021, 33(5): 422-434. |
[3] | 杨长琴,张国伟,王晓婧,刘瑞显,倪万潮. 不同种植模式棉花产量、种植效益与氮素利用率比较分析[J]. 棉花学报, 2021, 33(4): 307-318. |
[4] | 张岚,程琦,梁士辰,邓雨潇,潘玉欣. 棉花UGPase基因鉴定与生物信息学分析[J]. 棉花学报, 2021, 33(4): 337-346. |
[5] | 马怡茹,吕新,祁亚琴,张泽,易翔,陈翔宇,鄢天荥,侯彤瑜. 基于无人机数码图像的机采棉脱叶率监测模型构建[J]. 棉花学报, 2021, 33(4): 347-359. |
[6] | 苟浩琦,马常凯,张迁,范术丽,马启峰,张朝军. 棉花光敏雄性不育系psm5的培育及其育性转变规律[J]. 棉花学报, 2021, 33(4): 360-367. |
[7] | 王林,张强,马江锋,朱玉永,田英,李红,毕显杰,宋敏,王海标,雷天翔,李召虎,田晓莉,杜明伟,张立祯,赵冰梅. 新疆棉区植保无人机喷施棉花脱叶催熟剂效果研究[J]. 棉花学报, 2021, 33(3): 200-208. |
[8] | 易翔, 张立福, 吕新, 张泽, 田敏, 印彩霞, 马怡茹, 范向龙. 基于无人机高光谱融合连续投影算法估算棉花地上部生物量[J]. 棉花学报, 2021, 33(3): 224-234. |
[9] | 孙璘, 海艳, 唐晓雪, 祖丽皮亚·艾买, 焦瑞莲, 任毓忠, 李国英. 新疆棉花茎腐病的病原鉴定及其生物学特性研究[J]. 棉花学报, 2021, 33(3): 235-246. |
[10] | 党文芳, 刘萍, 管力慧, 杨红梅, 牛新湘, 李萍, 楚敏, 娄恺, 史应武. 土壤环境因子对棉花根际与内生拮抗细菌存活数量的影响[J]. 棉花学报, 2021, 33(3): 247-257. |
[11] | 杨可心, 陈秀叶, 刘畅, 鹿秀云, 郭庆港, 马平. 棉花枯萎病菌新生理型菌株毒素鉴定及其活性测定[J]. 棉花学报, 2021, 33(3): 258-268. |
[12] | 安杰,韩迎春,张正贵,冯璐,雷亚平,杨北方,王国平,李小飞,王占彪,邢芳芳,熊世武,辛明华,李亚兵. 不同熟性棉花品种冠层温度分布特点[J]. 棉花学报, 2021, 33(2): 134-143. |
[13] | 孟浩峰,雷长英,张旺锋,张亚黎. 系统调控下棉花比叶重的变化机制[J]. 棉花学报, 2021, 33(2): 144-154. |
[14] | 张友昌,黄晓莉,胡爱兵,李洪菊,冯常辉,李蔚,张贤红,罗艳萍,杨国正. 长江流域麦/油后直播棉花播种时间下限研究[J]. 棉花学报, 2021, 33(2): 155-168. |
[15] | 王广恩,郭丽,钱玉源,刘祎,张曦. 不同咸水利用方式对棉花叶绿素荧光参数及土壤盐分的影响[J]. 棉花学报, 2021, 33(1): 13-21. |
|