棉花学报 ›› 2021, Vol. 33 ›› Issue (3): 291-306.doi: 10.11963/1002-7807.sycb.20210429
• 专题与述评 • 上一篇
宋勇1,2(),陈兵1,*(
),王琼1,苏维1,2,孙乐鑫1,2,赵静1,韩焕勇1,王方永1
收稿日期:
2020-12-25
发布日期:
2021-06-04
通讯作者:
陈兵
E-mail:1783479805@qq.com;zyrcb@126.com
作者简介:
宋勇(1993―),男,硕士研究生, 基金资助:
Song Yong1,2(),Chen Bing1,*(
),Wang Qiong1,Su Wei1,2,Sun Lexin1,2,Zhao Jing1,Han Huanyong1,Wang Fangyong1
Received:
2020-12-25
Published:
2021-06-04
Contact:
Chen Bing
E-mail:1783479805@qq.com;zyrcb@126.com
摘要:
病虫对作物生产构成了巨大的威胁,可直接或间接导致作物减产甚至绝收。快速、高效地掌握病虫的发生动态并及时防控,对作物增产保收具有重要意义。无人机遥感是现阶段监测作物病虫害的一项重要技术,具有实时、快速、高效、客观、大面积、无损监测等优点,将推动农业生产向优质、高效、安全、信息化以及智慧化方向发展。本文从无人机遥感监测作物病虫害概况、数据源种类、数据获取方法、数据处理流程及方法等方面进行归纳分析;指出无人机遥感监测作物病虫害中存在的病虫害特征选择、病虫害分类识别、传感器优化以及数据处理等主要问题,针对存在的问题提出了深化病虫害特征选择算法、建立专属病虫害光谱数据库、开发专一的病虫害监测传感器以及研发病虫害数据处理平台等发展策略,以期为无人机遥感监测作物病虫害的相关研究提供参考。
宋勇,陈兵,王琼,苏维,孙乐鑫,赵静,韩焕勇,王方永. 无人机遥感监测作物病虫害研究进展[J]. 棉花学报, 2021, 33(3): 291-306.
Song Yong,Chen Bing,Wang Qiong,Su Wei,Sun Lexin,Zhao Jing,Han Huanyong,Wang Fangyong. Research advances of crop diseases and insect pests monitoring by unmanned aerial vehicle remote sensing[J]. Cotton Science, 2021, 33(3): 291-306.
表1
不同机载传感器优缺点及相关研究"
传感器 Sensor type | 波长范围/nm Wavelength range/nm | 优点 Advantages | 缺点 Disadvantages | 文献编号 Reference number |
多光谱仪 Multi-spectral sensor | 390~3 000 | 波段多、信息量大、成本低、类型多样化等 Multiple bands, large amount of information, low cost, diversified camera types, etc. | 波段易饱和、成像速度慢和图像质量差等 Band saturation, slow imaging speed and poor image quality, etc. | [ |
高光谱仪 Hyper-spectral sensor | 10~5 000 | 光谱信息量丰富、分辨率高、准确度高等 Rich in spectral information, high resolution and high accuracy, etc. | 价格较昂贵等 More expensive, etc. | [ |
数码相机 Digital camera | 390~770 | 使用方便、成本低、类型多样化等 Easy to use, low cost, diversified camera types, etc. | 信息量少、分辨率低,波段少等 Less information, low resolution, few bands, etc. | [ |
红外热成像仪 Infrared thermal imaging sensor | 3 000~18 000 | 对目标物温湿度敏感、便于监测作物蒸腾及旱情等 Sensitive to target temperature and humidity, easy to monitor crop transpiration and drought, etc. | 图像分辨率低、信噪比低,受外界环境因素干扰大等 Low image resolution, low signal-to- noise ratio, and interference from external environmental factors, etc. | [ |
激光雷达 Light detection and ranging sensor | 106~1010 | 获取作物冠层点云信息、作物水平和垂直冠层结构参数反演等 Obtain point cloud information of crop canopy, inversion of crop horizontal and vertical canopy structure parameters, etc. | 价格昂贵、数据处理量大等 High price and large amount of data processing, etc. | [ |
表2
不同机载传感器参数信息及相关应用"
传感器 Sensor type | 电磁波类型 Type of electromagnetic wave | 测量指标 Measurement index standard | 应用领域 Application fields |
多光谱仪 Multi-spectral sensor | 可见光、红边、近红外光 Visible light, red edge, near infrared light | 覆盖度、叶面积、氮素营养、生物量等 Coverage, leaf area, nitrogen nutrition, biomass, etc. | 病虫害监测、作物分类、UAV 应用、作物图谱等 Disease and pest monitoring, crop classification, UAV application, crop map, etc. |
高光谱仪 Hyper-spectral sensor | 可见光、近红外光、中红外光 Visible light, near infrared light, mid-infrared | 覆盖度、叶面积、生物量、产量等 Coverage, leaf area, crop biomass, crop biomass, etc. | 病虫害监测、作物分类、UAV 应用、作物图谱等 Disease and pest monitoring, crop classification, UAV application, crop map, etc. |
红外热成像仪 Infrared thermal imaging | 红外光 Infrared light | 气孔导度、水分胁迫等 Stomatal conductance, water stress, etc. | 作物冠层温度、蒸腾、旱情、病虫害监测等 Crop canopy temperature, transpiration, drought, disease and pest monitoring, etc. |
数码相机 Digital camera | 红光、绿光、蓝光 Red light, green light, blue-ray | 覆盖度、倒伏等 Crop coverage, crop lodging, etc. | 农业、地理测绘、拍照等 Agriculture, geographic mapping, take pictures, etc. |
激光雷达 Light detection and ranging sensor | 脉冲电磁波 Pulsed electromagnetic wave | 作物株高、生物量、叶面积等Crop height, crop biomass, leaf area, etc. | 农作物分类、估产、参数反演等 Crop classification, yield estimation, inversion of growth parameters, etc. |
表3
不同飞行平台的优缺点"
机型Drone type | 优点Advantages | 缺点Disadvantages |
固定翼无人机 Fixed-wing drone | 巡航面积大;速度快;飞行高度高等 Large cruising area, fast speed, high flying altitude, etc. | 不能悬停获取影像;飞行灵活度低;操作难度大;风险高;成本高等 Unable to hover to obtain continuous images, low flight flexibility, difficult to operate, high risk, high cost, etc. |
混合翼无人机 Hybrid wing drone | 良好的可操作性;稳定性高;可随意降落等 Good maneuverability, high stability, free landing, etc. | 飞行速度低;到达指定地点慢;价格昂贵等 Low flying speed, slow to reach the designated location, expensive, etc. |
无人直升机 Unmanned Helicopter | 可靠性高;可低空、低速飞行等 High reliability, low altitude and low speed, etc. | 振动、噪声高;维护检修工作量较大;成本高,速度较低;航程短等 High vibration and noise, heavy maintenance and repair work, high cost and low speed, short voyage, etc. |
多旋翼无人机 Multi-rotor drone | 种类多;可操控性强、可靠性高;勤务性高;安全系数高等 Wide variety, strong maneuverability, high reliability, high serviceability, high safety factor, etc. | 成本高;灵活性不高等 High cost, low flexibility, etc. |
[1] |
He H M, Liu L N, Munir S, et al. Crop diversity and pest management in sustainable agriculture[J/OL]. Journal of Integrative Agriculture, 2018, 18(9): 1945-1952[2020-12-20]. https://doi.org/10.1016/S2095-3119(19)62689-4.
doi: https://doi.org/10.1016/S2095-3119(19)62689-4 |
[2] | 刘万才, 刘振东, 黄冲,等. 近10年农作物主要病虫害发生危害情况的统计和分析[J]. 植物保护, 2016, 42(5): 1-9, 46. |
Liu Wancai, Liu Zhendong, Huang Chong, et al. Statistics and analysis of crop yield losses caused by main diseases and insect pests in recent 10 years[J]. Plant Protection, 2016, 42 (5): 1-9, 46. | |
[3] | 范承啸, 韩俊, 熊志军,等. 无人机遥感技术现状与应用[J]. 测绘科学, 2009, 34(5): 214-215. |
Fan Chengxiao, Han Jun, Xiong Zhijun, et al. Application and status of unmanned aerial vehicle remote sensing technology[J]. Science of Surveying and Mapping, 2009, 34(5): 214-215. | |
[4] | 任艳中, 王弟, 李轶涛,等. 无人机遥感在森林资源监测中的应用研究进展[J]. 中国农学通报, 2020, 36(8): 111-118. |
Ren Yanzhong, Wang Di, Li Yitao, et al. Applications of unmanned aerial vehicle-based remote sensing in forest resources monitoring: a review[J]. Chinese Agricultural Science Bulletin, 2020, 36(8): 111-118. | |
[5] |
纪景纯, 赵原, 邹晓娟,等. 无人机遥感在农田信息监测中的应用进展[J/OL]. 土壤学报, 2019, 56(4): 773-784 [2020-12-20]. https://doi.org/10.11766/trxb201811190508.
doi: https://doi.org/10.11766/trxb201811190508 |
Ji Jingchun, Zhao Yuan, Zou Xiaojuan, et al. Advancement in application of UAV remote sensing to monitoring of farmlands[J/OL]. Acta Pedologica Sinica, 2019, 56(4): 773-784 [2020-12-20]. https://doi.org/10.11766/trxb201811190508.
doi: https://doi.org/10.11766/trxb201811190508 |
|
[6] |
兰玉彬, 邓小玲, 曾国亮. 无人机农业遥感在农作物病虫草害诊断应用研究进展[J/OL]. 智慧农业, 2019, 1(2): 1-19 [2020-12-20]. https://doi.org/10.12133/j.smartag.2019.1.2.201904-SA003.
doi: https://doi.org/10.12133/j.smartag.2019.1.2.201904-SA003 |
Lan Yubin, Deng Xiaoling, Zeng Guoliang. Advances in diagnosis of crop diseases, pests and weeds by UAV remote sensing[J/OL]. Smart Agriculture, 2019, 1(2): 1-19[2020-12-20]. https://doi.org/10.12133/j.smartag.2019.1.2.201904-SA003.
doi: https://doi.org/10.12133/j.smartag.2019.1.2.201904-SA003 |
|
[7] |
廖小罕, 肖青, 张颢. 无人机遥感:大众化与拓展应用发展趋势[J/OL]. 遥感学报, 2019, 23(6): 1046-1052 [2020-12-20]. https://doi.org/10.11834/jrs.20199422.
doi: https://doi.org/10.11834/jrs.20199422 |
Liao Xiaohan, Xiao Qing, Zhang Hao. UAV remote sensing: popularization and expand application development trend[J/OL]. National Remote Sensing Bulletin, 2019, 23(6): 1046-1052[2020-12-20]. https://doi.org/10.11834/jrs.20199422.
doi: https://doi.org/10.11834/jrs.20199422 |
|
[8] |
Backoulou G F, Elliott N C, Giles K, et al. Spatially discriminating Russian wheat aphid induced plant stress from other wheat stressing factors[J/OL]. Computers and Electronics in Agriculture, 2011, 78(2): 123-129 [2020-12-20]. https://doi.org/10.1016/j.compag.2011.06.005.
doi: https://doi.org/10.1016/j.compag.2011.06.005 |
[9] |
Xavier T W F, Souto R N V, Statella T, et al. Identification of Ramularia leaf blight cotton disease infection levels by multispectral, multiscale UAV imagery[J/OL]. Drones, 2019, 3(2): 33-33 [2020-12-20]. https://doi.org/10.3390/drones3020033.
doi: https://doi.org/10.3390/drones3020033 |
[10] |
Severtson D, Callow N, Flower K, et al. Unmanned aerial vehicle canopy reflectance data detects potassium deficiency and green peach aphid susceptibility in canola[J/OL]. Precision Agriculture, 2016, 17(6): 659-667[2020-12-20]. https://doi.org/10.1007/s11119-016-9442-0.
doi: https://doi.org/10.1007/s11119-016-9442-0 |
[11] |
Sanseechan P, Saengprachathanarug K, Posom J, et al. Use of vegetation indices in monitoring sugarcane white leaf disease symptoms in sugarcane field using multispectral UAV aerial imagery[C/OL]// The 12th TSAE International Conference, 14-15 March 2019, Hard Rock Hotel Pattaya, Chonburi, Thailand. Bristol, UK: IOP Publishing Ltd, 2019: 12-25[2020-12-20]. https://doi.org/10.1088/1755-1315/301/1/012025.
doi: https://doi.org/10.1088/1755-1315/301/1/012025 |
[12] |
Gennaro S, Battiston E, Marco S D, et al. Unmanned aerial vehicle (UAV) based remote sensing to monitor grapevine leaf stripe disease within a vineyard affected by esca complex[J/OL]. Phytopathologia Mediterranea, 2016, 55(2): 262-275 [2020-12-20]. https://doi.org/10.14601/Phytopathol_Mediterr-18312.
doi: https://doi.org/10.14601/Phytopathol_Mediterr-18312 |
[13] | 崔美娜. 基于无人机遥感的棉花螨害动态监测研究[D]. 石河子: 石河子大学, 2019. |
Cui Meina. Study on dynamic monitoring of cotton spider mites based on remote sensing of UAV[D]. Shihezi: Shihezi University, 2019. | |
[14] |
赵晓阳, 张建, 张东彦,等. 低空遥感平台下可见光与多光谱传感器在水稻纹枯病病害评估中的效果对比研究[J/OL]. 光谱学与光谱分析, 2019, 39(4): 1192-1198 [2020-12-20]. https://doi.org/10.3964/j.issn.1000-0593(2019)04-1192-07.
doi: https://doi.org/10.3964/j.issn.1000-0593(2019)04-1192-07 |
Zhao Xiaoyang, Zhang Jian, Zhang Dongyan, et al. Comparison between the effects of visible light and multispectral sensor based on low-altitude remote sensing platform in the evaluation of rice sheath blight[J/OL]. Spectroscopy and Spectral Analysis, 2019, 39(4): 1192-1198[2020-12-20]. https://doi.org/10.3964/j.issn.1000-0593(2019)04-1192-07.
doi: https://doi.org/10.3964/j.issn.1000-0593(2019)04-1192-07 |
|
[15] |
Su J, Liu C, Coombes M, et al. Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery[J/OL]. Computers and Electronics in Agriculture, 2018, 155: 157-166 [2020-12-20]. https://doi.org/10.1016/j.compag.2018.10.017.
doi: https://doi.org/10.1016/j.compag.2018.10.017 |
[16] |
Su J Y, Liu C J, Hu X P, et al. Spatio-temporal monitoring of wheat yellow rust using UAV multispectral imagery[J/OL]. Computers and Electronics in Agriculture, 2019, 167: 105035 [2020-12-20]. https://doi.org/10.1016/j.compag.2019.105035.
doi: https://doi.org/10.1016/j.compag.2019.105035 |
[17] |
Li X H, Lee W S, Li M Z, et al. Spectral difference analysis and airborne imaging classification for citrus greening infected trees[J/OL]. Computers and Electronics in Agriculture, 2012, 83: 32-46 [2020-12-20]. https://doi.org/10.1016/j.compag.2012.01.010.
doi: https://doi.org/10.1016/j.compag.2012.01.010 |
[18] | 李凤菊, 刘小军, 姜海燕,等. 基于Web GIS与知识模型的小麦病虫草害管理决策支持系统研究[J]. 麦类作物学报, 2009, 29(5): 934-940. |
Li Fengju, Liu Xiaojun, Jiang Haiyan, et al. Study on Web GIS and knowledge model based decision support system for disease-pest-weed management in wheat[J]. Journal of Triticeae Crops, 2009, 29(5): 934-940. | |
[19] |
Yang C H, Everitt J H, Fernandez C Z, et al. Comparison of airborne multispectral and hyperspectral imagery for mapping cotton root rot[J/OL]. Biosystems Engineering, 2010, 107(2): 131-139 [2020-12-20]. https://doi.org/10.1016/j.biosystemseng.2010.07.011.
doi: https://doi.org/10.1016/j.biosystemseng.2010.07.011 |
[20] | 陈欣欣. 基于低空遥感成像技术的油菜菌核病检测研究[D]. 杭州: 浙江大学, 2017. |
Chen Xinxin. Detection of Sclerotinia stem rot of oilseed rape by using image-based low-altitude remote sensing technology[D]. Hangzhou: Zhejiang University, 2017. | |
[21] |
Kumar A, Lee W S, Ehsani R J, et al. Citrus greening disease detection using aerial hyperspectral and multispectral imaging techniques[J/OL]. Journal of Applied Remote Sensing, 2012, 6(1): 63542 [2020-12-20]. https://doi.org/10.1117/1.JRS.6.063542.
doi: https://doi.org/10.1117/1.JRS.6.063542 |
[22] |
Huang H S, Deng J Z, Lan Y B, et al. Detection of Helminthosporium leaf blotch disease based on UAV imagery[J/OL]. Applied Sciences, 2019, 9(3): 558 [2020-12-20]. https://doi.org/10.3390/app9030558.
doi: https://doi.org/10.3390/app9030558 |
[23] |
兰玉彬, 朱梓豪, 邓小玲,等. 基于无人机高光谱遥感的柑橘黄龙病植株的监测与分类[J/OL]. 农业工程学报, 2019, 35(3): 92-100 [2020-12-20]. https://doi.org/10.11975/j.issn.1002-6819.2019.03.012.
doi: https://doi.org/10.11975/j.issn.1002-6819.2019.03.012 |
Lan Yubin, Zhu Zihao, Deng Xiaoling, et al. Monitoring and classification of citrus Huanglongbing based on UAV hyperspectral remote sensing[J/OL]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 92-100[2020-12-20]. https://doi.org/10.11975/j.issn.1002-6819.2019.03.012.
doi: https://doi.org/10.11975/j.issn.1002-6819.2019.03.012 |
|
[24] |
Thomasson J A, Wang T Y, Wang X W, et al. Disease detection and mitigation in a cotton crop with UAV remote sensing[C/OL]// Proceedings of Society of Photo-Optical Instrumentation Engineers 10664, Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping III, 106640L. Orlando, USA: SPIE, 2018: 106640L[2020-12-20]. https://doi.org/10.1117/12.2307018.
doi: https://doi.org/10.1117/12.2307018 |
[25] |
Tetila E C, Machado B B, Belete N, et al. Identification of soybean foliar diseases using unmanned aerial vehicle images[J/OL]. IEEE Geo-science and Remote Sensing Letters, 2017, 14(12): 2190-2194[2020-12-20]. https://doi.org/10.1109/LGRS.2017.2743715.
doi: https://doi.org/10.1109/LGRS.2017.2743715 |
[26] |
吴才聪, 胡冰冰, 赵明,等. 基于无人机影像和半变异函数的玉米螟空间分布预报方法[J/OL]. 农业工程学报, 2017, 33(9): 84-91[2020-12-20]. https://doi.org/10.11975/j issn.1002-6819.201 7.09.011.
doi: https://doi.org/10.11975/j issn.1002-6819.201 7.09.011 |
Wu Caicong, Hu Bingbing, Zhao Ming, et al. Prediction method for spatial distribution of corn borer based on unmanned aerial vehicle images and semivariance function[J/OL]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33 (9): 84-91 [2020-12-20]. https://doi.org/10.11975/j issn.1002-6819.201 7.09.011.
doi: https://doi.org/10.11975/j issn.1002-6819.201 7.09.011 |
|
[27] | 付巍. 小麦全蚀病无人机遥感监测研究[D]. 郑州: 河南农业大学, 2015. |
Fu Wei. Research of wheat take-all-disease based on UAV remote sensing monitoring[D]. Zhengzhou: Henan Agricultural University, 2015. | |
[28] |
Deng X L, Li Z, Deng X L, et al. Citrus disease recognition based on weighted scalable vocabulary tree[J/OL]. Precision Agriculture, 2014, 15(3): 321-330[2020-12-20]. https://doi.org/10.1007/s11119-013-9329-2.
doi: https://doi.org/10.1007/s11119-013-9329-2 |
[29] |
Deng X L, Lan Y B, Hong T S, et al. Citrus greening detection using visible spectrum imaging and C-SVC[J/OL]. Computers and Electronics in Agriculture, 2016, 130: 177-183 [2020-12-20]. https://doi.org/10.1016/j.compag.2016.09.005.
doi: https://doi.org/10.1016/j.compag.2016.09.005 |
[30] |
Deng X L, Lan Y B, Xing X Q, et al. Detection of citrus Huanglongbing based on image feature extraction and two-stage BPNN modeling[J/OL]. International Journal of Agricultural and Biological Engineering, 2016, 9(6):20-26[2020-12-20]. https://doi.org/10.3965/j.ijabe.2016.0906.1895.
doi: https://doi.org/10.3965/j.ijabe.2016.0906.1895 |
[31] | 刘伟. 小麦白粉病的遥感监测及空气中病菌孢子的时空动态研究[D]. 合肥: 安徽农业大学, 2014. |
Liu Wei. Monitoring of wheat powdery mildew by using remote sensing and spatiotemporal dynamics of airborne conidia of Blumeria graminis f. sp. tritici[D]. Hefei: Anhui Agricultural University, 2014. | |
[32] | 冷伟锋. 小麦条锈病遥感监测及网络信息平台构建[D]. 北京: 中国农业大学, 2015. |
Leng Weifeng. Remote sensing monitoring of wheat yellow rust and development of network platform for the disease information[D]. Beijing: China Agricultural University, 2015. | |
[33] |
史东旭, 高德民, 薛卫,等. 基于物联网和大数据驱动的农业病虫害监测技术[J/OL]. 南京农业大学学报, 2019, 42(5): 967-974 [2020-12-20]. https://doi.org/10.7685/jnau.201812026.
doi: https://doi.org/10.7685/jnau.201812026 |
Shi Dongxu, Gao Demin, Xue Wei, et al. Research on agricultural disease and pest monitoring technology based on internet of things and big data[J/OL]. Journal of Nanjing Agricultural University, 2019, 42(5): 967-974 [2020-12-20]. https://doi.org/10.7685/jnau.201812026.
doi: https://doi.org/10.7685/jnau.201812026 |
|
[34] |
王震, 褚桂坤, 张宏建,等. 基于无人机可见光图像Haar-like特征的水稻病害白穂识别[J/OL]. 农业工程学报, 2018, 34(20): 81-90. https://doi.org/10.11975/j.issn.1002-6819.2018.20.010.
doi: https://doi.org/10.11975/j.issn.1002-6819.2018.20.010 |
Wang Zhen, Chu Guikun, Zhang Hongjian, et al. Identification of diseased empty rice panicles based on Haar-like feature of UAV optical image[J/OL]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20): 81-90 [2020-12-20]. https://doi.org/10.11975/j.issn.1002-6819.2018.20.010.
doi: https://doi.org/10.11975/j.issn.1002-6819.2018.20.010 |
|
[35] |
孙钰, 周焱, 袁明帅,等. 基于深度学习的森林虫害无人机实时监测方法[J/OL]. 农业工程学报, 2018, 34(21): 74-81 [2020-12-20]. https://doi.org/10.11975/j.issn.1002-6819.2018.21.009.
doi: https://doi.org/10.11975/j.issn.1002-6819.2018.21.009 |
Sun Yu, Zhou Yan, Yuan Mingshuai, et al. UAV real-time monitoring for forest pest based on deep learning[J/OL]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(21): 74-81[2020-12-20]. https://doi.org/10.11975/j.issn.1002-6819.2018.21.009.
doi: https://doi.org/10.11975/j.issn.1002-6819.2018.21.009 |
|
[36] | 马书英, 郭增长, 王双亭,等. 板栗树红蜘蛛病虫害无人机高光谱遥感监测研究[J/OL]. 农业机械学报, 2021(2021-02-05) [2021-03-18]. http://kns.cnki.net/kcms/detail/11.1964.S.20210204.1844.004.html. |
Ma Shuying, Guo Zengzhang, Wang Shuangting, et al. Hyperspectral remote sensing monitoring of Chinese chestnut red mite diseases and insect pests in UAV[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2021(2021-02-05)[2021-03-18]. http://kns.cnki.net/kcms/detail/11.1964.S.20210204.1844.004.html. | |
[37] |
Kerkech M, Hafiane A, Canals R. Deep leaning approach with colorimetric spaces and vegetation indices for vine diseases detection in UAV images[J/OL]. Computers and Electronics in Agriculture, 2018, 155: 237-243[2020-12-20]. https://doi.org/10.1016/j compag.2018.10.006.
doi: https://doi.org/10.1016/j compag.2018.10.006 |
[38] |
Fernando V, Dmitry B, Kevin P, et al. A novel methodology for improving plant pest surveillance in vineyards and crops using UAV based hyper-spectral and spatial data[J/OL]. Sensors, 2018, 18(1): 260 [2020-12-20]. https://doi.org/10.3390/s18010260.
doi: https://doi.org/10.3390/s18010260 |
[39] | 李振兴. 基于无人机遥感的小麦全蚀病监测系统设计与实现[D]. 郑州: 河南农业大学, 2016. |
Li Zhenxing. Design and implementation of monitoring system for wheat take-all disease based on UAV remote sensing[D]. Zhengzhou: Henan Agricultural University, 2016. | |
[40] |
Sugiura R, Tsuda S, Tamiya S J, et al. Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle[J/OL]. Biosystems Engineering, 2016, 148: 1-10[2020-12-20]. https://doi.org/10.1016/j.biosystemseng.2016.04.010.
doi: https://doi.org/10.1016/j.biosystemseng.2016.04.010 |
[41] |
Gwan H J, Hyeonjoon M, Tae K J, et al. Deep convolutional neural network for classifying Fusarium wilt of radish from unmanned aerial vehicles[J/OL]. Journal of Applied Remote Sensing, 2017, 11(4): 1[2020-12-20]. https://doi.org/10.1117/1.JRS.11.042621.
doi: https://doi.org/10.1117/1.JRS.11.042621 |
[42] |
刘金沧, 王成波, 常原飞. 基于多特征CRF的无人机影像松材线虫病监测方法[J/OL]. 测绘通报, 2019(7):78-82 [2020-12-20]. https //doi.org/10.13474/j. cnki.11-2246.2019.0223.
doi: https://doi.org/10.13474/j.cnki.11-2246.2019.0223 |
Liu Jincang, Wang Chengbo, Chang Yuanfei. Monitoring method of Bursaphelenchus xylophilus based on multi-feature CRF by UAV image[J/OL]. Bulletin of Surveying and Mapping, 2019(7): 78-82[2020-12-20]. https://doi.org/10.13474/j.cnki.11-2246.2019.0223.
doi: https://doi.org/10.13474/j.cnki.11-2246.2019.0223 |
|
[43] |
Schmitz A, Kiewnick S, Schlang J, et al. Use of high resolution digital thermography to detect Heterodera schachtii infestation in sugar beets[J]. Communications in Agricultural and Applied Biological Sciences, 2004, 69(3): 359-363.
pmid: 15759435 |
[44] |
Caldern R, NAavas-corts J A, Lycena C, et al. High-resolution airborne hyperspectral and thermal imagery for early detection of verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices[J/OL]. Remote Sensing of Environment, 2013, 139: 231-245. [2020-12-20]. https://doi.org/10.1016/j.rse.2013.07.031.
doi: https://doi.org/10.1016/j.rse.2013.07.031 |
[45] | 刘飞, 曹峰, 孔汶汶,等. 一种基于无人机多源图像融合的作物病害监测方法和系统: CN108346143A[P]. 2018-07-31. |
Liu Fei, Cao Feng, Kong Wenwen, et al. A crop disease monitoring method and system based on multi-source image fusion of UAV: CN108346143A[P]. 2018-07-31. | |
[46] | 吴惠英, 周彬, 陆军,等. 一种基于无人机的农作物病虫害监测系统和方法: CN201410259770[P]. 2014-09-09. |
Wu Huiying, Zhou Bin, Lu Jun, et al. A UAV-based crop pest monitoring system and method:CN201410259770[P]. 2014-09-09. | |
[47] | 裴鹏程. 利用无人机成像高光谱监测棉蚜为害等级研究[D]. 郑州: 河南农业大学, 2019. |
Pei Pengcheng. Study on monitoring of cotton aphid damage level based on UAV hyperspectral images[D]. Zhengzhou: Henan Agricultural University, 2016. | |
[48] | 郑晓梅. 基于多平台遥感的东亚飞蝗灾害监测研究[D]. 杭州: 浙江大学, 2019. |
Zheng Xiaomei. Monitoring oriental migratory locust damage based on multi-platform remote sensing techniques[D]. Hangzhou: Zhejiang University, 2019. | |
[49] | Nebiker S, Lack N, Abcherli M, et al. Light-weight multispectral UAV sensors and their capabilities for prediction grain yield and detecting plant diseases[M/OL]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences:XLI-B1. Hannover, Germany: The International Society of Photogrammetry and Remote Sensing, 2016: 963-970[2020-12-20]. https://doi.org/10.5194/isprs-archives-XLI-B1-963-2016. |
[50] | 曹峰. 基于多源数据的油菜病害快速诊断方法与物联网监测系统[D]. 杭州: 浙江大学, 2019. |
Cao Feng. Rapid diagnostic method of oilseed rape of diseases and IoT monitoring system based on multi-source data[D]. Hangzhou: Zhejiang University, 2019. | |
[51] |
Li X H, Lee W S, Li M Z, et al. Spectral difference analysis and airborne imaging classification for citrus greening infected trees[J/OL]. Computers and Electronics in Agriculture, 2012, 83: 32-46 [2020-12-20]. https://doi.org/10.1016/j.compag.2012.01.010.
doi: https://doi.org/10.1016/j.compag.2012.01.010 |
[52] |
Prabhakar M, Prasad Y G, Vennil S, et al. Hyperspectral indices for assessing damage by the solenopsis mealybug (Hemiptera: Pseudococcidae) in cotton[J/OL]. Computers and Electronics in Agriculture, 2013, 97: 61-70[2020-12-20]. https://doi.org/10.1016/j.compag.2013.07.004.
doi: https://doi.org/10.1016/j.compag.2013.07.004 |
[53] |
Mahalakshmi S D, Vijayalakshmi K, Suraksha A. Pest and disease detection for corn field using image analysis[J/OL]. Journal of Ambient Intelligence and Humanized Computing, 2020, 11: 1-15[2020-12-20]. https://doi.org/10.1007/s12652-020-02413-0.
doi: https://doi.org/10.1007/s12652-020-02413-0 |
[54] |
Su J Y, Liu C J, Coombes M, et al. Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery[J/OL]. Computers and Electronics in Agriculture, 2018, 155: 157-166 [2020-12-20]. https://doi.org/10.1016/j.compag.2018.10.017.
doi: https://doi.org/10.1016/j.compag.2018.10.017 |
[55] |
乔红波. 基于无人机数字图像与高光谱数据融合的小麦全蚀病等级的快速分类技术[J/OL]. 植物保护, 2015, 41(6): 157-162 [2020-12-20]. https://doi.org/10.3969/j.issn.0529-1542.2015.06.029.
doi: https://doi.org/10.3969/j.issn.0529-1542.2015.06.029 |
Qiao Hongbo. Fast multi-classification of wheat take-all levels based on the fusion of unmanned aerial vehicle digital images and spectral data[J/OL]. Plant Protection, 2015, 41(6): 157-162[2020-12-20]. https://doi.org/10.3969/j.issn.0529-1542.2015.06.029.
doi: https://doi.org/10.3969/j.issn.0529-1542.2015.06.029 |
|
[56] | 郑琼. 小麦条锈病多尺度遥感监测方法研究[D]. 北京: 中国矿业大学, 2019. |
Zheng Qiong. Monitoring of wheat yellow rust based on multi-scale remote sensing data[D]. Beijing: China University of Mining, 2019. | |
[57] |
Leng W F, Wang H G, Yan Y, et al. Preliminary study on monitoring wheat stripe rust with using UAV[J/OL]. Acta Phytopathologica Sinica, 2012, 42(2): 202-205 [2020-12-20]. https://doi.org/10.13926/j.cnki. apps.2012.02.012.
doi: https://doi.org/10.13926/j.cnki. apps.2012.02.012 |
[58] |
罗菊花, 黄文江, 顾晓鹤. 基于PHI影像敏感波段组合的冬小麦条锈病遥感监测研究[J]. 光谱学与光谱分析, 2010, 30(1): 184-187.
pmid: 20302110 |
Luo Juhua, Huang Wenjing, Gu Xiaohe. Remote sensing monitoring of winter wheat stripe rust based on PHI image sensitive band combination[J]. Spectroscopy and Spectral Analysis, 2010, 30(1): 184-187.
pmid: 20302110 |
|
[59] |
郭伟, 朱耀辉, 王慧芳. 基于无人机高光谱影像的冬小麦全蚀病监测模型研究[J/OL]. 农业机械学报, 2019, 50(9): 162-169 [2020-12-20]. https://doi.org/10.6041/j.issn.1000-H298.2019.09.018.
doi: https://doi.org/10.6041/j.issn.1000-H298.2019.09.018 |
Guo Wei, Zhu Yaohui, Wang Huifang. Monitoring model of winter wheat take-all based on UAV hyperspectral imaging[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(9):162-169 [2020-12-20]. https://doi.org/10.6041/j.issn.1000-H298.2019.09.018.
doi: https://doi.org/10.6041/j.issn.1000-H298.2019.09.018 |
|
[60] |
Dehkordi R H, Jarroudi M E, Kouadio L, et al. Monitoring wheat leaf rust and stripe rust in winter wheat using high resolution UAV based red-green-blue imagery[J/OL]. Remote Sensing, 2020, 12(22): 3696 [2020-12-20]. https://doi.org/10.3390/rs12223696.
doi: https://doi.org/10.3390/rs12223696 |
[61] | 张学敏. 基于支持向量数据描述的遥感图像病害松树识别研究[D]. 合肥: 安徽大学, 2014. |
Zhang Xuemin. Research of infected pine recognition in remote sensing images based on support vector data description[D]. Hefei: Anhui University, 2014. | |
[62] | 杨俊, 王瑞, 周平,等. 基于深度学习的小麦赤霉病监测研究[C]// 中国作物学会. 2019年中国作物学会学术年会论文摘要集. 北京: 中国作物学会, 2019: 267. |
Yang Jun, Wang Rui, Zhou Ping, et al. Research on wheat scab monitoring based on deep learning[C]// The Crop Science Society of China. 2019 collection of abstracts of papers of the annual conference of the Crop Science Society of China. Beijing: The Crop Science Society of China, 2019: 267. | |
[63] |
Abdulridha J, Batuman O, Ampatzidis Y. UAV-based remote sensing technique to detect citrus canker disease utilizing hyper-spectral imaging and machine learning[J/OL]. Remote Sensing, 2019, 11(11): 1373[2020-12-20]. https://doi.org/10.3390/rs11111373.
doi: https://doi.org/10.3390/rs11111373 |
[64] | 孙盈蕊. 基于多尺度遥感技术的水稻病虫害监测研究[D]. 北京: 中国地质大学, 2019. |
Sun Yingrui. Rice pest and disease monitoring based on multi-scale remote sensing technology[D]. Beijing: China University of Geosciences, 2019. | |
[65] |
Huang H S, Deng J Z, Lan Y B, et al. A two-stage classification approach for the detection of spider mite-infested cotton using UAV multi-spectral imagery[J/OL]. Remote Sensing Letters, 2018, 9(10): 933-941[2020-12-20]. https://doi.org/10.1080/2150704X.2018.1498600.
doi: https://doi.org/10.1080/2150704X.2018.1498600 |
[66] | 朱耀辉. 基于无人机成像高光谱的冬小麦全蚀病等级监测[D]. 郑州: 河南农业大学, 2018. |
Zhu Yaohui. Monitoring and classification of wheat take-all in field based on UAV hyper-spectral image[D]. Zhengzhou: Henan Agricultural University, 2018. | |
[67] | 袁建清. 基于多尺度遥感的寒地水稻稻瘟病信息提取与识别研究[D]. 哈尔滨: 东北农业大学, 2017. |
Yuan Jianqing. Information extraction and identification of rice blast in cold region based on multi-scale remote sensing data[D]. Harbin: Northeast Agricultural University, 2017. | |
[68] |
Dang L M, Syed I H, Suhyeon I, et al. Drone agriculture imagery system for radish wilt disease identification via efficient convolutional neural network[J/OL]. Sustainable Computing: Informatics and Systems, 2018, 5(1): 1[2020-12-20]. https://doi.org/10.1016/j.suscom.2018.05.010.
doi: https://doi.org/10.1016/j.suscom.2018.05.010 |
[69] |
王佳宇, 杜波波, 高书晶,等. 草原蝗虫监测预警技术的研究进展[J/OL]. 植物保护学报, 2021, 48(1):65-72 [2021-02-28]. https://doi.org/10.13802/j.cnki.zwbhxb.2021.2021807.
doi: https://doi.org/10.13802/j.cnki.zwbhxb.2021.2021807 |
Wang Jiayu, Du Bobo, Gao Shujing, et al. Research progress of grassland locust monitoring and early warning technology[J/OL]. Journal of Plant Protection, 2021, 48(1): 65-72 [2021-02-28]. https://doi.org/10.13802/j.cnki.zwbhxb.2021.2021807.
doi: https://doi.org/10.13802/j.cnki.zwbhxb.2021.2021807 |
|
[70] |
Gao D M, Sun Q, Hu B, et al. A framework for agricultural pest and disease monitoring based on internet of things and unmanned aerial vehicles[J/OL]. Sensors, 2020, 20(5): 1487-1487 [2020-12-20]. https://doi.10.3390/s20051487.
doi: 10.3390/s20051487 |
[1] | 马怡茹,吕新,祁亚琴,张泽,易翔,陈翔宇,鄢天荥,侯彤瑜. 基于无人机数码图像的机采棉脱叶率监测模型构建[J]. 棉花学报, 2021, 33(4): 347-359. |
[2] | 王林,张强,马江锋,朱玉永,田英,李红,毕显杰,宋敏,王海标,雷天翔,李召虎,田晓莉,杜明伟,张立祯,赵冰梅. 新疆棉区植保无人机喷施棉花脱叶催熟剂效果研究[J]. 棉花学报, 2021, 33(3): 200-208. |
[3] | 陈焕轩,韩迎春,冯璐,杨北方,雷亚平,王占彪,李亚兵. 智慧农业在棉花生产管理中的应用[J]. 棉花学报, 2020, 32(3): 269-278. |
[4] | 迟宝杰,董合忠. 间(套)作对棉田病虫害的防控效应及其风险控制[J]. 棉花学报, 2019, 31(4): 341-351. |
[5] | 王献锋, 丁军, 朱义海. 一种改进的深度置信网络在棉花病虫害预测中的应用[J]. 棉花学报, 2018, 30(4): 300-307. |
[6] | 宋振伟, 张金渝, 史利玉, 严明理, 杨新泉, 杜生明. 近20 a国家自然科学基金棉花遗传育种与栽培生理领域申请及资助项目分析[J]. 棉花学报, 2017, 29(1): 108-118. |
[7] | 崔日鲜, 付金东. 山东植棉区降水与棉花需水耦合度的时空变化特征分析[J]. 棉花学报, 2014, 26(1): 49-57. |
[8] | 林 蔚, 张 雷, 张国伟, 孟亚利, 陈兵林, 王友华, 周治国. 滨海盐土棉田棉花水、盐遥感监测系统的设计与实现[J]. 棉花学报, 2012, 24(2): 114-119. |
[9] | 祁亚琴, 吕 新, 陈冠文, 林海荣, 陈 燕, 陈 剑. 基于高光谱植被指数的棉田冠层特征信息估算模型研究[J]. 棉花学报, 2011, 23(5): 476-480. |
[10] | 祁亚琴, 吕 新, 陈冠文, 林海荣, 陈 燕, 杨 坤. 基于高光谱数据提取棉花冠层特征信息的研究[J]. 棉花学报, 2011, 23(2): 167-171. |
[11] | 林海荣, 李章成, 周清波, 吕 新. 基于ETM植被指数和冠层温度差异遥感监测棉花冷害[J]. 棉花学报, 2009, 21(4): 284-289. |
|