欢迎访问《棉花学报》! 今天是

棉花学报 ›› 2021, Vol. 33 ›› Issue (3): 291-306.doi: 10.11963/1002-7807.sycb.20210429

• 专题与述评 • 上一篇    

无人机遥感监测作物病虫害研究进展

宋勇1,2(),陈兵1,*(),王琼1,苏维1,2,孙乐鑫1,2,赵静1,韩焕勇1,王方永1   

  1. 1.新疆农垦科学院,新疆 石河子 832000
    2.石河子大学,新疆 石河子 832003
  • 收稿日期:2020-12-25 发布日期:2021-06-04
  • 通讯作者: 陈兵 E-mail:1783479805@qq.com;zyrcb@126.com
  • 作者简介:宋勇(1993―),男,硕士研究生, 1783479805@qq.com
  • 基金资助:
    国家自然科学基金(41961054);国家自然科学基金(41971321);新疆生产建设兵团领军人才(2019CB018);新疆生产建设兵团英才第二层次人选项目

Research advances of crop diseases and insect pests monitoring by unmanned aerial vehicle remote sensing

Song Yong1,2(),Chen Bing1,*(),Wang Qiong1,Su Wei1,2,Sun Lexin1,2,Zhao Jing1,Han Huanyong1,Wang Fangyong1   

  1. 1. Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang 832000, China
    2. Shihezi University, Shihezi, Xinjiang 832003, China
  • Received:2020-12-25 Published:2021-06-04
  • Contact: Chen Bing E-mail:1783479805@qq.com;zyrcb@126.com

摘要:

病虫对作物生产构成了巨大的威胁,可直接或间接导致作物减产甚至绝收。快速、高效地掌握病虫的发生动态并及时防控,对作物增产保收具有重要意义。无人机遥感是现阶段监测作物病虫害的一项重要技术,具有实时、快速、高效、客观、大面积、无损监测等优点,将推动农业生产向优质、高效、安全、信息化以及智慧化方向发展。本文从无人机遥感监测作物病虫害概况、数据源种类、数据获取方法、数据处理流程及方法等方面进行归纳分析;指出无人机遥感监测作物病虫害中存在的病虫害特征选择、病虫害分类识别、传感器优化以及数据处理等主要问题,针对存在的问题提出了深化病虫害特征选择算法、建立专属病虫害光谱数据库、开发专一的病虫害监测传感器以及研发病虫害数据处理平台等发展策略,以期为无人机遥感监测作物病虫害的相关研究提供参考。

关键词: 作物; 病虫害; 无人机; 遥感; 监测方法; 数据处理; 特征提取; 人工智能

Abstract:

In the process of crop production, pests and diseases pose a great threat to crop production, which can directly or indirectly lead to yield reduction or even crop failure. Rapid and efficient grasping of the dynamics of occurrence of pests and diseases and timely prevention and control are important for crop yield and income. Unmanned aerial vehicle (UAV) remote sensing is an important technology for monitoring crop pests and diseases at this stage. It has the advantages of real-time, fast, efficient, objective, large-area, non-destructive monitoring, which will promote the development of agricultural production in the direction of high quality, high efficiency, safety, informatization and wisdom. We summarize the situation, data source types, data acquisition methods, data processing procedure and methods of UAV remote sensing monitoring of crop diseases and insect pests, etc.; also point out the main problems of pest and disease feature selection, pest and disease classification identification, sensor optimization and data processing in UAV remote sensing monitoring of crop pests and diseases. In view of the existing problems, this paper puts forward an algorithm to deepen the selection of pest and disease characteristics, establishes an exclusive pest and disease spectrum database, develops a dedicated pest and disease monitoring sensor, and develops a platform for processing pest, in order to provide a reference for the research related to UAV remote sensing monitoring of crop pests and diseases.

Key words: crops; pests and diseases; unmanned aerial vehicle; remote sensing; monitoring method; data processing; feature extraction; artificial intelligence