[1] Eulgem T, Rushton P J, Robatzek S, et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science, 2000, 5(5): 199-206.
[2] Wang Kunbo, Wang Zhiwen, Li Fuguang, et al. The draft genome of a diploid cotton Gossypium raimondii[J]. Nature Genetics, 2012, 44(10): 1098-1103.
[3] Li Fuguang, Fan Guangyi, Wang Kunbo, et al. Genome sequence of the cultivated cotton Gossypium arboreum[J]. Nature Genetics, 2014, 46(6): 567-572.
[4] Li Fuguang, Fan Guangyi, Lu Cairui, et al. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution[J]. Nature Biotechnology, 2015, 33(5): 524-530.
[5] Zhang Tianzhen, Hu Yan, Jiang Wenkai, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement[J]. Nature Biotechnology, 2015, 33(5): 531-537.
[6] Yuan Daojun, Tang Zhonghui, Wang Maojun, et al. The genome sequence of sea-island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres[J/OL]. Scientific Reports, 2015, 5: 17662 [2016-10-12]. https://www.scienceopen.com/document_file/ab63 1975-4060-4707-85cf-cf20fd7f6b1a/PubMedCentral/ab631975- 4060-4707-85cf-cf20fd7f6b1a.pdf. DOI: 10.1038/srep17662.
[7] Liu Xia, Zhao Bo, Zheng Huajun, et al. Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites[J/OL]. Scientific Reports, 2015, 5: 14139 [2016-10-12]. https://www.scienceopen.com/document_file/81afb1e3-a417-4978-9837-e810d6c78d89/ PubMedCentral/81afb1e3-a417-4978-9837-e810d6c78d89.pdf. DOI: 10.1038/srep14139.
[8] Ding Mingquan, Chen Jiadong, Jiang Yurong, et al. Genome- wide investigation and transcriptome analysis of the WRKY gene family in Gossypium[J]. Molecular Genetics Genomics, 2015, 290(1): 151-171.
[9] Dou Lingling, Zhang Xiaohong, Pang Chaoyou, et al. Genome- wide analysis of the WRKY gene family in cotton[J]. Molecular Genetics and Genomics, 2014, 289(6): 1103-1121.
[10] Cai Caiping, Niu Erli, Du Hao, et al. Genome-wide analysis of the WRKY transcription factor gene family in Gossypium raimondii and the of orthologs in cultivated tetraploid cotton[J]. The Crop Journal, 2014, 2(2/3): 87-101.
[11] Chu Xiaoqian, Wang Chen, Chen Xiaobo, et al. The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana[J/OL]. PLoS ONE, 2015, 10(11): e0143022 [2016-10-12]. http://dx.doi.org/10.1371/journal.pone.0143022.
[12] Zhou Li, Wang Nana, Gong Siying, et al. Over of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt-tolerance of the transgenic plants[J]. Plant Physiology and Biochemistry, 2015, 96: 311-320.
[13] Shi Weina, Hao Lili, Li Jing, et al. The Gossypium hirsutum WRKY gene GhWRKY39-1 promotes pathogen infection defense responses and mediates salt stress tolerance in transgenic Nicotiana benthamiana[J]. Plant Cell Reports, 2014, 33(3): 483- 498.
[14] Yan Yan, Jia Haihong, Wang Fang, et al. Over of GhWRKY27a reduces tolerance to drought stress and resistance to Rhizoctonia solani infection in transgenic Nicotiana benthamiana[J/OL]. Frontiers in Physiology, 2015, 6: 265 [2016-10-12]. http://dx.doi.org/10.3389/fphys.2015.00265.
[15] Jia Haihong, Wang Chen, Wang Fang, et al. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana[J/OL]. PLoS ONE, 2015, 10(3): e0120646 [2016-10- 12]. http://journals.plos.org/plosone/article/asset?id=10.1371/ journal.pone.0120646.PDF.
[16] Yan Huiru, Jia Haihong, Chen Xiaobo, et al. The cotton WRKY transcription factor GhWRKY17 functions in drought and sal stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production[J]. Plant and Cell Physiology, 2014, 55(12): 2060-2076.
[17] Yu Feifei, Huaxia Yifeng, Lu Wenjing, et al. GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L.), is involved in disease resistance and plant development[J/OL]. BMC Plant Biology, 2012, 12: 144 [2016-10-12]. http://www.biomedcentral.com/ 1471-2229/12/144. DOI: 10.1186/1471-2229-12-144.
[18] Liu Xiufang, Song Yunzhi, Xing Fangyu, et al. GhWRKY25, a group Ⅰ WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana[J]. Protoplasma, 2016, 253(5): 1265-1281.
[19] Wang Xiuling, Yan Yan, Li Yuzhen, et al. GhWRKY40, a multiple stress-responsive cotton WRKY gene, plays an important role in the wounding response and enhances susceptibility to Ralstonia solanacearum infection in transgenic Nicotiana benthamiana[J/OL]. PLoS ONE, 2014, 9(4): e93577 [2016-10-12]. http://journals.plos.org/plosone/article/asset?id=10.1371/journal.pone.0093577.PDF.
[20] 窦玲玲, 李光雷, 庞朝友,等. 棉花转录因子GhWRKY11 的克隆及功能分析[J]. 农业生物技术学报, 2016, 24(5): 625-636.Dou Lingling, Li Guanglei, Pang Chaoyou, et al. Cloning and function analysis of GhWRKY11 in cotton (Gossypium hirsutum)[J]. Journal of Agricultural Biotechnology, 2016, 24(5): 625-636.
[21] Fan Xinqi, Guo Qi, Xu Peng, et al. Transcriptome-wide identification of salt-responsive members of the WRKY gene family in Gossypium aridum[J/OL]. PLoS ONE, 2015, 10(5): e0126148 [2016-10-12]. http://journals.plos.org/plosone/article/asset?id= 10.1371/journal.pone.0126148.PDF.
[22] Xu Yanhua, Wang Jiawei, Wang Shui, et al. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A[J]. Plant Physiology, 2004, 135(1): 507-515.
[23] Xu Li, Jin Li, Long Lu, et al. Over of GbWRKY1 positively regulates the Pi starvation response by alteration of auxin sensitivity in Arabidopsis[J]. Plant Cell Reports, 2012, 31(12): 2177-2188.
[24] 倪志勇, 于月华, 陈全家, 等. 大豆GmNAC115基因克隆及特征分析[J]. 大豆科学, 2016, 35(5): 16-20.
Ni Zhiyong, Yu Yuehua, Chen Quanjia, et al. Cloning and characterization of GmNAC115 gene in soybean[J]. Soybean Science, 2016, 35(5): 16-20.
[25] Xu Xinping, Chen Chunhong, Fan Baofang, et al. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors[J]. Plant Cell, 2006, 18(5): 1310-1326.
[26] Chen Han, Lai Zhibing, Shi Junwei, et al. Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress[J/OL]. BMC Plant Biology, 2010, 10: 281 [2016-10-12]. http://www.biome- dcentral.com/1471-2229/10/281. DOI: 10.1186/1471-2229-10- 281.
[27] 周立. 棉花(Gossypium hirsutum)WRKY基因分离与鉴定[D]. 武汉: 华中师范大学, 2014.
Zhou Li. Isolation and characterization of WRKY genes in cotton (Gossypium hirsutum)[D]. Wuhan: Central China Normal University, 2014.
[28] 加得拉·吐留汗, 倪志勇, 邱迎风, 等. 海岛棉GbWRKY32基因的克隆及特性分析[J]. 分子植物育种, 2016, 14(6): 1361- 1368.
Jadera Toluhan, Ni Zhiyong, Qiu Yingfeng, et al. Cloning and characterization of GbWRKY32 in sea island cotton (Gossypium barbadense L.)[J]. Molecular Plant Breeding, 2016, 14(6):1361-1368.
[29] 李光雷, 范术丽, 宋美珍, 等.棉花转录因子GhWRKY4基因的克隆及特征分析[J]. 棉花学报, 2013, 25(3): 205-210.
Li Guanglei, Fan Shuli, Song Meizhen, et al. Molecular cloning and characterization analysis of GhWRKY4, a transcription factor gene in cotton (Gossypium hirsutum L.)[J]. Cotton Science, 2013, 25(3): 205-210.
[30] Wan Qun, Zhang Hua, Ye Wenxue, et al. Genome-wide transcriptome profiling revealed cotton fuzz fiber development having a similar molecular model as Arabidopsis trichome[J/OL]. PLoS ONE, 2014, 9(5): e97313 (2014-05-13) [2016-10-12]. http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0097313.PDF.
[31] Johnson C S, Kolevski B, Smyth D R. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor[J]. Plant Cell, 2002, 14(6): 1359-1375. |