Please wait a minute...

   检索  |  高级检索
棉花学报  2018, Vol. 30 Issue (3): 215-223    DOI: 10.11963/1002-7807.mlzsj.20180510
  研究与进展 本期目录 | 过刊浏览 | 高级检索 |
陆地棉植物络合素合酶基因的鉴定与功能预测
梅磊1, 2,李玲3,肖钦之4,陈进红1,祝水金1*
1.浙江大学农业与生物技术学院,杭州 310058;2. 剑桥大学植物系,英国 剑桥 CB2 3EA;3.湖南科技学院化学与生物工程学院,湖南 永州425199;4. 湖南省邵阳市烟草专卖局,湖南 邵阳 422000
Genome-Wide Identification and Functional Prediction of Phytochelatin Synthase Gene in Upland Cotton
Mei Lei1, 2, Li Ling3, Xiao Qinzhi4, Chen Jinhong1, Zhu Shuijin1*
1.College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; 2. Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK; 3. College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, China; 4. Shaoyang Tobacco Monopoly Bureau, Shaoyang, Hunan 422000, China
全文: PDF(3999 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 【目的】重金属胁迫对植物的生长发育有不良影响,植物络合素合酶(Phytochelatin synthase,PCS)在植物主动防御金属毒害过程中起关键作用。本文旨在对陆地棉PCS基因的数量、结构、分布和特性进行研究。【方法】根据棉属陆地棉(Gossypium hirsutum,(AD)1),以及供体种雷蒙德氏棉(G. raimondii,D5)和亚洲棉(G.arboreum,A2)全基因组序列信息,结合双子叶模式植物拟南芥PCS蛋白特征域结构,对陆地棉PCS基因家族成员进行全基因组鉴定,并对其进行蛋白特征鉴定、同源类别分析、基因结构预测、酶作用位点比对以及半胱氨酸(Cys,Cysteine)分布分析。[结果]陆地棉中鉴定出4个PCS基因,而在其供体种雷蒙德氏棉和亚洲棉各鉴定出2个PCS基因。3个棉属8个PCS蛋白家族成员均含有2个特有的结构域,与催化中心相关的氨基酸位点完全保守。PCS蛋白家族在进化上分属2个不同亚组,亚组I与亚组II在亲缘关系上分别更接近双子叶植物和线虫,2个亚组内PCS家族在基因结构、Cys分布上存在差异,其中亚组I较亚组II整体内含子更长,N端Cys总数和成对Cys数量更多。雷蒙德氏棉中的2个旁系同源基因外显子完整性不及亚洲棉和陆地棉。【结论】相较于亚组II,亚组I的棉花PCS蛋白可能具有更强的植物络合酶活性,且陆地棉及其供体种亚洲棉对重金属的耐性强于雷蒙德氏棉。本研究为进一步研究棉花PCS的功能,以及棉花耐重金属胁迫品种改良提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梅磊
李玲
肖钦之
陈进红
祝水金
关键词 棉花植物络合素合酶比较基因组学功能预测    
Abstract:[Objective] Heavy metal stress rise advertise effects on growth and development in plant, from which phytochelatin synthase (PCS) plays key roles to protect plant cells. This article will present studies on the gene amount, structure, distribution and features. [Method] PCS gene family in cotton are analyzed based on completely global genome sequence cotton species including Gossypium hirsutum ((AD)1),  G. raimondii (D5) and G. arboreum (A2), for further understanding of those genes and protein family features. In this study, we conducted the analysis involving in identification on PCS family members, special protein domain comparison, polygenetic analysis, gene structure prediction and Cysteine survey. [Result] 2, 2 and 4 PCS genes were identified out in G. raimondii (D5), G. arboreum (A2) and G. hirsutum ((AD)1), respectively. All these 8 PCS genes had phytochelatin and phytochelatin_C domains and strictly conserved amino acid residues related to catalytic activity. Cotton PCS protein family members could be divided into 2 sub-group, and these members belongs to sub-group I or sub-group II are close to dicotyledon or nematode, respectively. What’s more, there are some difference in both gene structure and Cys distribution between those 2 sub-groups. Less integrity of exons in PCS genes in G. raimondii, comparing to G. hirsutum and G. arboreum. [Conclusion] Comparing to sub-group II, the PCS genes from sub-group I should be higher catalytic activity. G. hirsutum and its donor G. arboreum probably are more heavy metal tolerant than G. raimondii. Based on the results, this research will provide some insights on further functional study.
Key words     cotton    phytochelatin synthase    comparative genomics    functional prediction
收稿日期: 2017-09-11      出版日期: 2018-06-06
中图分类号:  S562.03  
基金资助:国家自然科学基金青年项目(31501342);国家重点研发计划(2016YFD0101400);国家建设高水平大学公派研究生项目(201506320088)
*通信作者: shjzhu@zju.edu.cn   
作者简介: 梅磊(1986―),男,博士研究生,leimei@zju.edu.cn; meileihzr@163.com,ORCID:0000-0001-9556-1289。
引用本文:   
梅磊,李玲,肖钦之, 等. 陆地棉植物络合素合酶基因的鉴定与功能预测[J]. 棉花学报, 2018, 30(3): 215-223.
Mei Lei,Li Ling,Xiao Qinzhi, et al. Genome-Wide Identification and Functional Prediction of Phytochelatin Synthase Gene in Upland Cotton[J]. Cotton Science, 2018, 30(3): 215-223.
链接本文:  
http://journal.cricaas.com.cn/Jweb_mhxb/CN/10.11963/1002-7807.mlzsj.20180510      或      http://journal.cricaas.com.cn/Jweb_mhxb/CN/Y2018/V30/I3/215
[1] 杨伟华, 王延琴, 周大云, 等. 植棉修复重金属污染土壤研究进展[J]. 湖南农业科学, 2014(18): 41-44. <br />
Yang Weihua, Wang Yanqin, Zhou Dayun, et al. Research progress in remediation of heavy-metal contaminated soils by planting cotton[J]. Hunan Agricultural Sciences, 2014(18): 41-44.<br />
[2] Muhammad D K. 陆地棉抗除草剂基因的遗传转化及其抗镉胁迫的遗传效应探讨[D]. 杭州: 浙江大学, 2008.<br />
Muhammad D K. Research on transformation of herbicide-resistant gene and Cd stress on upland cotton[D]. Hanzhou: Zhejiang University, 2008.<br />
[3] 梅磊, 李玲, Daud M K, 等. 棉花对重金属胁迫的应答反应与抗性机理研究进展[J]. 棉花学报, 2018, 30(1): 102-110.<br />
Mei Lei, Li Ling, Daud M K, et al. Advances on response and resistance to heavy metal stress in cotton[J]. Cotton Science, 2018, 30(1): 102-110.<br />
[4] 陈浩东, 贺云新, 郭利双, 等. 镉胁迫对3个棉花品种生理生化特征及农艺性状的影响[J]. 棉花学报, 2018, 30(1): 62-76.<br />
Chen Haodong, He Yunxin, Guo Lishuang, et al. Effects of cadmium stress on physiological and biochemical characteristics and agronomic traits of three upland cotton cultivars[J]. Cotton Science, 2018, 30(1): 62-76.<br />
[5] 陈悦, 李玲, 何秋伶, 等. 镉胁迫对三个棉花品种(系)产量、纤维品质和生理特性的影响[J]. 棉花学报, 2014, 26(6): 521-530.<br />
Chen Yue, Li Ling, He Qiuling, et al. Effects of cadmium stress on yield, fiber quality, and physiological traits of three upland cotton cultivars (lines)[J]. Cotton Science, 2014, 26(6): 521-530.<br />
[6] 刘连涛, 陈静, 孙红春, 等. 镉胁迫对棉花幼苗生长效应及不同器官镉积累的影响[J]. 棉花学报, 2014, 26(5): 466-470.<br />
Liu Liantao, Chen Jing, Sun Hongchun, et al. Effects of cadmium stress on growth and cadmium accumulation in cotton (<em>Gossypium hirsutum</em> L.) seedlings[J]. Cotton Science, 2014, 26(5): 466-470.<br />
[7] 李玉军, 张志刚, 匡政成, 等. 植棉修复镉污染土壤研究进展[J]. 中国棉花, 2017, 44(4): 8-10.<br />
Li Yujun, Zhang Zhigang, Kuang Zhengcheng, et al. Research progress in remediation of cadmium contaiminated soils by planting cotton[J]. China Cotton, 2017, 44(4): 8-10.<br />
[8] 李玲. 镉胁迫对陆地棉生长发育、产量和品质的影响及其耐镉性的遗传研究[D]. 杭州: 浙江大学, 2012.<br />
Li Ling. Effect of cadmium stress on growth, yield and quality in upland cotton and its genetic analysis for cadmium tolerance[D]. Hanzhou: Zhejiang University, 2012.<br />
[9] 冯保民, 麻密. 植物络合素及其合酶在重金属抗性中的功能研究进展[J]. 应用与环境生物学报, 2003, 9(6): 657-661.<br />
Feng Bomin, Ma Mi. Research advance of phytochelatins and phytochelatin synthase on heavy metal tolerance[J]. Chinese Journal of Applied and Environmental Biology, 2003, 9(6): 657-661.<br />
[10] Grill E, Loffler S, Winnacker E L, et al. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase)[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(18): 6838-6842.<br />
[11] Cobbett C S. A family of phytochelatin synthase genes from plant, fungal and animal species[J]. Trends in Plant Science, 1999, 4(9): 335-337.<br />
[12] Kuhlenz T, Schmidt H, Uraguchi S, et al. Arabidopsis thaliana phytochelatin synthase 2 is constitutively active in vivo and can rescue the growth defect of the PCS1-deficient cad1-3 mutanton Cd-contaminated soil[J]. Journal of Experimental Botany, 2014, 65(15): 4241-4253.<br />
[13] Lee S, Kang B S. Expression of <em>Arabidopsis</em> phytochelatin synthase 2 is too low to complement an AtPCS1-defective cad1-3 mutant[J]. Molecules and Cells, 2005, 19(1): 81-87.<br />
[14] Li F, Fan G Y, Lu C, et al. Genome sequence of cultivated upland cotton (<em>Gossypium hirsutum</em> TM-1) provides insights into genome evolution[J]. Nature Biotechnology, 2015, 33(5): 524-530.<br />
[15] Paterson A H, Wendel J F, Gundlach H, et al. Repeated polyploidization of <em>Gossypium</em> genomes and the evolution of spinnable cotton fibres[J]. Nature, 2012, 492(7429): 423-427.<br />
[16] Li F G, Fan G, Wang K B, et al. Genome sequence of the cultivated cotton <em>Gossypium arboreum</em>[J]. Nature Genetics, 2014, 46(6): 567-572.<br />
[17] Finn R D, Coggill P, Eberhardt R Y, et al. The Pfam protein families database: Towards a more sustainable future[J]. Nucleic Acids Research, 2016, 44(D1): D279-D285.<br />
[18] Marchler-Bauer A, Bo Y, Han L, et al. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures[J]. Nucleic Acids Research, 2017, 45(D1): D200-D203.<br />
[19] Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874.<br />
[20] Hu B, Jin J, Guo A, et al. GSDS 2.0: An upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297.<br />
[21] Vivares D, Arnoux P, Pignol D. A papain-like enzyme at work: Native and acyl-enzyme intermediate structures in phytochelatin synthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(52): 18848-18853.<br />
[22] 唐杰. 基于半胱氨酸与重金属离子相互作用的分析应用研究[D]. 重庆: 西南大学, 2011.<br />
Tang Jie. The Research on the analysis and application of the interaction between cysteine and heavy metal ions[D]. Chongqing: Southwest University, 2011.<br />
[23] Vatamaniuk O K, Mari S, Lu Y P, et al. AtPCS1, a phytochelatin synthase from <em>Arabidopsis:</em> Isolation and in vitro reconstitution[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(12): 7110-<br />
71 15.<br />
[24] Chen J J, Zhou J M, Goldsbrough P B. Characterization of phytochelatin synthase from tomato[J]. Physiologia Plantarum, 1997, 101(1): 165-172.<br />
[25] Lee S, Korban S S. Transcriptional regulation of <em>Arabidopsis thaliana</em> phytochelatin synthase (AtPCS1) by cadmium during early stages of plant development[J]. Planta, 2002, 215(4): 689-693.
[1] 李冬旺, 张永江, 刘连涛, 孙红春, 刘玉春, 白志英, 李存东. 干旱胁迫对棉花冠层光合、光谱和荧光的影响[J]. 棉花学报, 2018, 30(3): 242-251.
[2] 徐瑞强, 董合林, 徐文修, 卡地力亚·阿不都克力木, 阿地娜·白山哈力, 董泰丽, 付传翠, 吾仁图雅·皮力加, 唐江华. 喷施浓缩沼液对棉花幼苗生长发育和生理特性的影响[J]. 棉花学报, 2018, 30(3): 261-271.
[3] 李淑叶, 马慧娟, 张思平, 刘绍东, 沈倩, 陈静, 葛常伟, 庞朝友, 赵新华. 外源24-表油菜素内酯对低温胁迫下棉花幼苗光合生理的影响[J]. 棉花学报, 2018, 30(3): 252-260.
[4] 李映程, 张国丽, 任毓忠, 李海强, 武刚, 李天义, 李国英, 张莉. 基于rDNA-ITS和组蛋白3基因序列分析鉴定新疆棉花叶斑病病原[J]. 棉花学报, 2018, 30(3): 271-281.
[5] 陈丽华, 何鹏飞, 袁德超, 欧晓慧, 吴毅歆, 何月秋. 一种防治棉花黄萎病的生物复合种衣剂的研制[J]. 棉花学报, 2018, 30(3): 282-290,封三.
[6] 栗战帅, 魏恒玲, 庞朝友, 王寒涛, 马启峰, 宿俊吉, 陈全家, 曲延英, 范术丽, 喻树迅. 棉花果枝节间长短性状内源激素的差异以及外施激素对其影响[J]. 棉花学报, 2018, 30(3): 224-230.
[7] 龙金辉, 朱真峰. 融合马尔可夫随机场与量子粒子群聚类的棉花图像分割算法[J]. 棉花学报, 2018, 30(2): 197-204.
[8] 孔令磊, 石玉真, 李邵琦, 黎波涛, 李俊文, 刘爱英, 龚举武, 商海红, 巩万奎, 葛群, 王艳玲, 宋威武, 袁有禄. 棉花陆海渐渗系双交分离群体产量和纤维品质性状的QTL定位[J]. 棉花学报, 2018, 30(2): 119-127.
[9] 张帆, 李晓林, 张敬泽, 祝水金. 病原物协同致病性对棉花黄萎病严重度的影响[J]. 棉花学报, 2018, 30(2): 188-196.
[10] 李青军, 张 炎, 哈丽哈什·依巴提, 冯固. 膜下滴灌棉花对3种水溶性磷肥的利用效率和产量响应[J]. 棉花学报, 2018, 30(2): 172-179.
[11] 乔清华, 张传云, 袁哲诚, 王芙蓉, 张军. 多年连作土壤中棉花根际细菌群落结构及其动态[J]. 棉花学报, 2018, 30(2): 128-135.
[12] 宋兴虎, Tufail Ahmed Wagan, Biangkham Souliyanonh, Saif Ali, 黄颖, 袁源, 杨国正. 氮肥用量及其后效对棉花产量和生物质累积动态的影响[J]. 棉花学报, 2018, 30(2): 145-154.
[13] 高超, 李明思, 蓝明菊. 土壤水分空间胁迫对棉花根系构型的影响[J]. 棉花学报, 2018, 30(2): 180-187.
[14] 张希鹤, 李岩, 郁凯, 霍钰阳, 王友华, 陈兵林. 黄萎病胁迫影响棉花幼苗光合及叶绿素荧光特性的机理[J]. 棉花学报, 2018, 30(2): 136-144.
[15] 孙淼, 李鹏程, 郑苍松, 刘帅, 刘爱忠, 韩慧敏, 刘敬然, 董合林. 低磷胁迫对不同基因型棉花苗期根系形态及生理特性的影响[J]. 棉花学报, 2018, 30(1): 45-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed