棉花学报 ›› 2021, Vol. 33 ›› Issue (2): 144-154.doi: 10.11963/1002-7807.mhfzyl.20210226
收稿日期:
2020-10-23
出版日期:
2021-03-15
发布日期:
2021-04-08
通讯作者:
张亚黎
E-mail:menghaofeng2014@163.com;zhangyali_cn@foxmail.com
作者简介:
孟浩峰(1991―),男,博士研究生, 基金资助:
Meng Haofeng(),Lei Zhangying,Zhang Wangfeng,Zhang Yali(
)
Received:
2020-10-23
Online:
2021-03-15
Published:
2021-04-08
Contact:
Zhang Yali
E-mail:menghaofeng2014@163.com;zhangyali_cn@foxmail.com
摘要:
【目的】 比叶重是叶片经济谱功能性状关系网络中的核心指标,受到各种环境因素的影响。但是,植物不同部位叶片间存在的系统调控如何影响比叶重的变化尚不清楚。【方法】 本研究通过田间密度试验和室内遮荫试验,测定棉花不同部位叶片的比叶重及其组织结构性状,分析比叶重和组织结构性状之间的关系以及影响比叶重的因素。【结果】 改变棉花下部叶片所处的光环境,会影响其叶片厚度、栅栏组织厚度、叶片结构紧密度和叶片结构疏松度,从而导致比叶重的变化。同时,由于系统调控的作用,上部叶片的结构特征表现出与下部叶片类似的变化趋势。栅栏组织厚度对不同部位叶片比叶重的影响最为显著。【结论】 棉花上部叶片比叶重的变化受下部叶片所处光环境的系统调控;在系统调控下棉花叶片比叶重的变化主要受栅栏组织厚度的影响。
孟浩峰,雷长英,张旺锋,张亚黎. 系统调控下棉花比叶重的变化机制[J]. 棉花学报, 2021, 33(2): 144-154.
Meng Haofeng,Lei Zhangying,Zhang Wangfeng,Zhang Yali. Variation mechanism of leaf mass per area in cotton under the systematic regulation[J]. Cotton Science, 2021, 33(2): 144-154.
[1] |
Poorter H, Niinemets, Poorter L, et al. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis[J]. New Phytologist, 2009, 182(3):565-588. DOI: 10.1111/j.1469-8137.2009.02830.x.
doi: 10.1111/j.1469-8137.2009.02830.x |
[2] |
刘明秀, 梁国鲁. 植物比叶质量研究进展[J]. 植物生态学报, 2016, 40(8):847-860. DOI: 10.17521/cjpe.2015.0428.
doi: 10.17521/cjpe.2015.0428 |
Liu Mingxiu, Liang Guolu. Research progress on leaf mass per area[J]. Chinese Journal of Plant Ecology, 2016, 40(8):847-860.
doi: 10.17521/cjpe.2015.0428 |
|
[3] |
Westoby M, Falster D S, Moles A T, et al. Plant ecological strategies: some leading dimensions of variation between species[J]. Annual Review of Ecology and Systematics, 2002, 33(1):125-159. DOI: 10.1146/annurev.ecolsys.33.010802.150452.
doi: 10.1146/annurev.ecolsys.33.010802.150452 |
[4] |
Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985):821-827. DOI: 10.1038/nature02403.
doi: 10.1038/nature02403 |
[5] |
Osnas J L D, Lichstein J W, Reich P B, et al. Global leaf trait relationships: mass, area, and the leaf economics spectrum[J]. Science, 2013, 340(6133):741-744. DOI: 10.1126/science.1231574.
doi: 10.1126/science.1231574 |
[6] |
Niinemets. Photosynjournal and resource distribution through plant canopies[J]. Plant Cell and Environment, 2007, 30(9):1052-1071. DOI: 10.1111/j.1365-3040.2007.01683.x.
doi: 10.1111/j.1365-3040.2007.01683.x pmid: 17661747 |
[7] |
Lusk C H, Reich P B, Montgomery R A, et al. Why are evergreen leaves so contrary about shade[J]. Trends in Ecology and Evolution, 2008, 23(6):299-303. DOI: 10.1016/j.tree.2008.02.006.
doi: 10.1016/j.tree.2008.02.006 |
[8] |
Coble A P, Cavaleri M A. Light acclimation optimizes leaf functional traits despite height-related constraints in a canopy shading experiment[J]. Oecologia, 2015, 177(4):1131-1143. DOI: 10.1007/s00442-015-3219-4.
doi: 10.1007/s00442-015-3219-4 pmid: 25596955 |
[9] |
Niinemets, Wright I J, Evans J R. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation[J]. Journal of Experimental Botany, 2009, 60(8):2433-2449. DOI: 10.1093/jxb/erp045.
doi: 10.1093/jxb/erp045 pmid: 19255061 |
[10] |
Scafaro A P, von Caemmerer S, Evans J R, et al. Temperature response of mesophyll conductance in cultivated and wild Oryza species with contrasting mesophyll cell wall thickness[J]. Plant Cell and Environment, 2011, 34(11):1999-2008. DOI: 10.1111/j.1365-3040.2011.02398.x.
doi: 10.1111/j.1365-3040.2011.02398.x |
[11] |
Terashima I, Hanba Y T, Tholen D, et al. Leaf functional anatomy in relation to photosynjournal[J]. Plant Physiology, 2011, 155(1):108-116. DOI: 10.1104/pp.110.165472.
doi: 10.1104/pp.110.165472 pmid: 21075960 |
[12] |
Witkowski E T F, Lamont B B. Leaf specific mass confounds leaf density and thickness[J]. Oecologia, 1991, 88(4):486-493. DOI: 10.1007/BF00317710.
doi: 10.1007/BF00317710 pmid: 28312617 |
[13] |
Muir C D, Hangarter R P, Moyle L C, et al. Morphological and anatomical determinants of mesophyll conductance in wild relatives of tomato (Solanum sect. Lycopersicon, sect. Lycopersicoides; Solanaceae)[J]. Plant Cell and Environment, 2014, 37(6):1415-1426. DOI: 10.1111/pce.12245.
doi: 10.1111/pce.12245 |
[14] |
Puglielli G, Crescente M F, Frattaroli A R, et al. Leaf mass per area (LMA) as a possible predictor of adaptive strategies in two species of Sesleria (Poaceae): analysis of morphological, anatomical and physiological leaf traits[J]. Annales Botanici Fennici, 2015, 52(1-2):135-143. DOI: 10.5735/085.052.0201.
doi: 10.5735/085.052.0201 |
[15] | 周治国, 孟亚利, 施培. 苗期遮荫对棉苗茎叶结构及功能叶光合性能的影响[J]. 中国农业科学, 2001, 34(5):519-525. |
Zhou Zhiguo, Meng Yali, Shi Pei. Effect of shading during seedling period on the structure of cotton stem and leaf and photosynthetic performance of functional leaf[J]. Scientia Agricultura Sinica, 2001, 34(5):519-525. | |
[16] |
王鑫, 李志强, 谷卫彬, 等. 盐胁迫下高粱新生叶片结构和光合特性的系统调控[J]. 作物学报, 2010, 36(11):1941-1949. DOI: 10.3724/SP.J.1006.2010.01941.
doi: 10.3724/SP.J.1006.2010.01941 |
Wang Xin, Li Zhiqiang, Gu Weibin, et al. Systemic regulation of anatomic structure and photosynthetic characteristics of developing leaves in sorghum seedlings under salt stress[J]. Acta Agronomica Sinica, 2010, 36(11):1941-1949.
doi: 10.3724/SP.J.1006.2010.01941 |
|
[17] | 李飞, 毛树春, 韩迎春, 等. 遮阴对基质育苗裸苗移栽棉花苗期生长的影响[J]. 棉花学报, 2013, 25(1):30-36. |
Li Fei, Mao Shuchun, Han Yingchun, et al. Responses of growth in the seedling period of transplanted cotton to the shading treatment[J]. Cotton Science, 2013, 25(1):30-36. | |
[18] |
Karpinski S, Reynolds H, Karpmska B, et al. Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis[J]. Science, 1999, 284(5414):654-657. DOI: 10.1126/science.284.5414.654.
doi: 10.1126/science.284.5414.654 pmid: 10213690 |
[19] |
Lake J A, Quick W P, Beerling D J, et al. Signals from mature to new leaves[J]. Nature, 2001, 411(6834):154. DOI: 10.1038/35075660.
doi: 10.1038/35075660 |
[20] |
Thomas P W, Woodward F I, Quick W P. Systemic irradiance signaling in tobacco[J]. New Phytologist, 2004, 161(1):193-198. DOI: 10.1046/j.1469-8137.2003.00954.x.
doi: 10.1046/j.1469-8137.2003.00954.x |
[21] |
Jiang C D, Wang X, Gao H Y, et al. Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in sorghum[J]. Plant Physiology, 2011, 155(3):1416-1424. DOI: 10.1104/pp.111.172213.
doi: 10.1104/pp.111.172213 |
[22] |
Li T, Liu L N, Jiang C D, et al. Effects of mutual shading on the regulation of photosynjournal in field-grown sorghum[J]. Journal of Photochemistry and Photobiology B: Biology, 2014, 137:31-38. DOI: 10.1016/j.jphotobiol.2014.04.022.
doi: 10.1016/j.jphotobiol.2014.04.022 |
[23] |
Li T, Liu Y J, Shi L, et al. Systemic regulation of photosynthetic function in field-grown sorghum[J]. Plant Physiology and Biochemistry, 2015, 94:86-94. DOI: 10.1016/j.plaphy.2015.05.008.
doi: 10.1016/j.plaphy.2015.05.008 |
[24] |
孟浩峰, 韩吉梅, 张玉洁, 等. 不同光环境下棉花叶片色素含量和荧光参数与光谱参数的相关性[J]. 新疆农业科学, 2017, 54(6):1014-1020. DOI: 10.6048/j.issn.1001-4330.2017.06.005.
doi: 10.6048/j.issn.1001-4330.2017.06.005 |
Meng Haofeng, Han Jimei, Zhang Yujie, et al. Correlation between pigment content, fluorescence parameters and spectral parameters of cotton leaves in different light environments[J]. Xinjiang Agricultural Sciences, 2017, 54(6):1014-1020.
doi: 10.6048/j.issn.1001-4330.2017.06.005 |
|
[25] | de la Riva E G, Olmo M, Poorter H, et al. Leaf mass per area (LMA) and its relationship with leaf structure and anatomy in 34 mediterranean woody species along a water availability gradient[J/OL]. PLoS One, 2016, 11(2): e0148788 (2016-02-11) [2020-09-28]. https://doi.org/10.1371/journal.pone.0148788 . |
[26] |
Villar R, Ruiz-Robleto J, Ubera J L, et al. Exploring variation in leaf mass per area (LMA) from leaf to cell: an anatomical analysis of 26 woody species[J]. American Journal of Botany, 2013, 100(10):1969-1980. DOI: 10.3732/ajb.1200562.
doi: 10.3732/ajb.1200562 |
[27] |
Coupe S A, Palmer B G, Lake J A, et al. Systemic signaling of environmental cues in Arabidopsis leaves[J]. Journal of Experimental Botany, 2006, 57(2):329-341. DOI: 10.1093/jxb/erj033.
doi: 10.1093/jxb/erj033 pmid: 16330523 |
[28] |
Coble A P, Cavaleri M A. Vertical leaf mass per area gradient of mature sugar maple reflects both height-driven increases in vascular tissue and light-driven increases in palisade layer thickness[J]. Tree Physiology, 2017, 37(10):1337-1351. DOI: 10.1093/treephys/tpx016.
doi: 10.1093/treephys/tpx016 pmid: 28338906 |
[29] |
Chabot B F, Jurik T W, Chabot JF. Influence of instantaneous and integrated light-flux density on leaf anatomy and photosynjournal[J]. American Journal of Botany, 1979, 66(8):940-945. DOI: 10.1002/j.1537-2197.1979.tb06304.x.
doi: 10.1002/j.1537-2197.1979.tb06304.x |
[30] |
Coble A P, Cavaleri M A. Light drives vertical gradients of leaf morphology in a sugar maple (Acer saccharum) forest[J]. Tree Physiology, 2014, 34(2):146-158. DOI: 10.1093/treephys/tpt126.
doi: 10.1093/treephys/tpt126 pmid: 24531298 |
[31] |
Lusk C H, Onoda Y, Kooyman R, et al. Reconciling species-level vs plastic responses of evergreen leaf structure to light gradients: shade leaves punch above their weight[J]. New Phytologist, 2010, 186(2):429-438. DOI: 10.1111/j.1469-8137.2010.03202.x.
doi: 10.1111/j.1469-8137.2010.03202.x |
[32] | 冯玉龙, 曹坤芳, 冯志立, 等. 四种热带雨林树种幼苗比叶重,光合特性和暗呼吸对生长光环境的适应[J]. 生态学报, 2002, 22(6):901-910. |
Feng Yulong, Cao Kunfang, Feng Zhili, et al. Acclimation of lamina mass per unit area, photosynthetic characteristics and dark respiration to growth light regimes in four tropical rainforest species[J]. Acta Ecologica Sinica, 2002, 22(6):901-910. | |
[33] |
王博轶, 马洪军, 苏腾伟, 等. 两种热带雨林树苗对环境光强变化的生理响应和适应机制[J]. 植物生理学报, 2012, 48(3):232-240. DOI: 10.13592/j.cnki.ppj.2012.03.002.
doi: 10.13592/j.cnki.ppj.2012.03.002 |
Wang Boyi, Ma Hongjun, Su Tengwei, et al. Physiological response and acclimation to changes in light regimes in two tropical rainforest species[J]. Plant Physiology Journal, 2012, 48(3):232-240.
doi: 10.13592/j.cnki.ppj.2012.03.002 |
|
[34] |
Oguchi R, Hikosaka K, Hirose T. Does the photosynthetic light-acclimation need change in leaf anatomy[J]. Plant Cell and Environment, 2005, 26(4):505-512. DOI: 10.1046/j.1365-3040.2003.00981.x.
doi: 10.1046/j.1365-3040.2003.00981.x |
[1] | 李鸣凤,彭文勇,何华,刘新伟,赵竹青. 外施不同形态硼对棉花吸收利用硼及其他矿质元素的影响[J]. 棉花学报, 2021, 33(5): 385-392. |
[2] | 王燕,张谦,王树林,韩硕,冯国艺,董明,钱玉源,祁虹. 耕层重构对棉田土壤养分、微生物数量与酶活性的影响[J]. 棉花学报, 2021, 33(5): 422-434. |
[3] | 张岚,程琦,梁士辰,邓雨潇,潘玉欣. 棉花UGPase基因鉴定与生物信息学分析[J]. 棉花学报, 2021, 33(4): 337-346. |
[4] | 马怡茹,吕新,祁亚琴,张泽,易翔,陈翔宇,鄢天荥,侯彤瑜. 基于无人机数码图像的机采棉脱叶率监测模型构建[J]. 棉花学报, 2021, 33(4): 347-359. |
[5] | 苟浩琦,马常凯,张迁,范术丽,马启峰,张朝军. 棉花光敏雄性不育系psm5的培育及其育性转变规律[J]. 棉花学报, 2021, 33(4): 360-367. |
[6] | 王林, 张强, 马江锋, 朱玉永, 田英, 李红, 毕显杰, 宋敏, 王海标, 雷天翔, 李召虎, 田晓莉, 杜明伟, 张立祯, 赵冰梅. 新疆棉区植保无人机喷施棉花脱叶催熟剂效果研究[J]. 棉花学报, 2021, 33(3): 200-208. |
[7] | 王金刚, 姜艳, 田甜, 朱永琪, 杨振康, 周天航, 张文旭, 佟炫梦, 孙嘉祺, 王海江. 减氮配施生物刺激素对棉花产量及氮肥吸收利用的影响[J]. 棉花学报, 2021, 33(3): 209-223. |
[8] | 易翔, 张立福, 吕新, 张泽, 田敏, 印彩霞, 马怡茹, 范向龙. 基于无人机高光谱融合连续投影算法估算棉花地上部生物量[J]. 棉花学报, 2021, 33(3): 224-234. |
[9] | 孙璘, 海艳, 唐晓雪, 祖丽皮亚·艾买, 焦瑞莲, 任毓忠, 李国英. 新疆棉花茎腐病的病原鉴定及其生物学特性研究[J]. 棉花学报, 2021, 33(3): 235-246. |
[10] | 党文芳, 刘萍, 管力慧, 杨红梅, 牛新湘, 李萍, 楚敏, 娄恺, 史应武. 土壤环境因子对棉花根际与内生拮抗细菌存活数量的影响[J]. 棉花学报, 2021, 33(3): 247-257. |
[11] | 杨可心, 陈秀叶, 刘畅, 鹿秀云, 郭庆港, 马平. 棉花枯萎病菌新生理型菌株毒素鉴定及其活性测定[J]. 棉花学报, 2021, 33(3): 258-268. |
[12] | 安杰,韩迎春,张正贵,冯璐,雷亚平,杨北方,王国平,李小飞,王占彪,邢芳芳,熊世武,辛明华,李亚兵. 不同熟性棉花品种冠层温度分布特点[J]. 棉花学报, 2021, 33(2): 134-143. |
[13] | 张友昌,黄晓莉,胡爱兵,李洪菊,冯常辉,李蔚,张贤红,罗艳萍,杨国正. 长江流域麦/油后直播棉花播种时间下限研究[J]. 棉花学报, 2021, 33(2): 155-168. |
[14] | 王广恩,郭丽,钱玉源,刘祎,张曦. 不同咸水利用方式对棉花叶绿素荧光参数及土壤盐分的影响[J]. 棉花学报, 2021, 33(1): 13-21. |
[15] | 郁凯,霍钰阳,朱俊俊,陈兵林,汤秋香. 盐胁迫下施钾调节棉纤维断裂比强度的糖代谢机制[J]. 棉花学报, 2021, 33(1): 22-32. |
|