棉花学报 ›› 2021, Vol. 33 ›› Issue (1): 42-53.doi: 10.11963/1002-7807.lpplfg.20201113
刘佩佩1,2(),魏喜2,陈艳丽2,王晔2,张桂寅1,*(
),李付广2,*(
)
收稿日期:
2020-05-04
出版日期:
2021-01-15
发布日期:
2021-02-25
通讯作者:
张桂寅,李付广
E-mail:l18937223335@163.com;mhyzh@hebau.edu.cn;aylifug@163.com
作者简介:
刘佩佩(1992―),女,硕士研究生, 基金资助:
Liu Peipei1,2(),Wei Xi2,Chen Yanli2,Wang Ye2,Zhang Guiyin1,*(
),Li Fuguang2,*(
)
Received:
2020-05-04
Online:
2021-01-15
Published:
2021-02-25
Contact:
Zhang Guiyin,Li Fuguang
E-mail:l18937223335@163.com;mhyzh@hebau.edu.cn;aylifug@163.com
摘要:
【目的】 研究脱落酸(Abscisic acid, ABA)对棉花体细胞胚胎发生过程中下胚轴脱分化和再分化的影响,优化体细胞胚胎发生体系和初步解析脱落酸调控棉花体细胞胚胎发生分子机制。【方法】 以棉花品种中棉所24(CCRI 24)下胚轴为外植体,设置5个ABA浓度0、0.02、0.04、0.06、0.08 μmol·L-1,分别以A0、A1、A2、A3、A4表示,添加至MSB(MS培养基+B5维生素)培养基诱导愈伤和胚性愈伤,研究ABA对棉花下胚轴初始细胞脱分化、愈伤组织诱导和胚性愈伤组织诱导的影响。【结果】 ABA促进下胚轴初始细胞脱分化;显著提高愈伤组织的脱分化率和增殖率;0.02 μmol·L-1 ABA显著提高胚性愈伤分化率,0.04~0.08 μmol·L-1 ABA显著降低胚性愈伤分化率。ABA处理后胚性愈伤和非胚性愈伤的增殖率均显著提高且质地受到影响。0.02~0.08 μmol ABA处理下,LBD和LBD在愈伤起始期上调表达。0.02 μmol·L-1 ABA处理下,在愈伤增殖早期和中期BBM、LEC1和AGL15上调表达,愈伤增殖后期FUS3、LEA、ABI3基因上调表达。【结论】 脱落酸调控的棉花体细胞胚胎发生与相关标记基因的时空性表达密切相关,这些基因表达水平的增加是ABA调控愈伤和胚性愈伤分化的分子基础。
刘佩佩,魏喜,陈艳丽,王晔,张桂寅,李付广. 脱落酸对棉花体细胞胚胎发生的影响[J]. 棉花学报, 2021, 33(1): 42-53.
Liu Peipei,Wei Xi,Chen Yanli,Wang Ye,Zhang Guiyin,Li Fuguang. Effect of abscisic acid on somatic embryogenesis in upland cotton (Gossypium hirsutum L.)[J]. Cotton Science, 2021, 33(1): 42-53.
表1
本研究中使用的引物"
基因名称 Gene name | 上游引物 Forward primer (5'-3') | 下游引物 Reverse primer (5'-3') |
GhHistone3 | CTTCAAGACTGATTTGCGTTTCC | GCGCAAAGGTTGGTGTCTTC |
GhLBD16 | TTGCGCCTTATTTCTGCTCGGA | AATGGTGACAACCGCCTCACAA |
GhLBD29 | TTCTGCCATGAACAGGGTGCAA | ATCACTGACAGGGAGGTGAGCA |
GhBBM | TGTGTACACATCATCGACTG | GCCATATTGCTTGACCTTTG |
GhLEC1 | CCCCACACGCCAAAATCTCTGA | GATTGATCCACGCTCACCCTCC |
GhAGL15 | GAAACTTTACGCAGGCAGG | CGAATGTTATGGCTCATCAGAG |
GhFUS3 | TAGCACGCACGGATTACAGCTC | CATCTTCGTCCGACGCCTTCTT |
GhLEA | AGTTCCTTGGTGCTTCTG | CATCGCATATCTTCGTTCC |
GhABI3 | CAGCAGCAGCCATCTGCTTTTC | CCTCTTTCGTAGCAGACGAGCC |
[1] |
孙悦, 华金平. 二倍体棉种组织培养研究进展[J]. 棉花学报, 2020, 32(2):158-169. DOI: 10.11963/1002-7807.syhjp.20200305
doi: 10.11963/1002-7807.syhjp.20200305 |
Sun Yue, Hua Jinping. Research in tissue culture of diploid cotton species[J]. Cotton Science, 2020, 32(2):158-169.
doi: 10.11963/1002-7807.syhjp.20200305 |
|
[2] |
Juturu V N, Mekala G K, Kirti P B. Current status of tissue culture and genetic transformation research in cotton (Gossypium spp.)[J]. Plant Cell, Tissue and Organ Culture(PCTOC), 2015, 120(3):813-839. DOI: 10.1007/s11240-014-0640-z.
doi: 10.1007/s11240-014-0640-z |
[3] |
Su Y H, Zhang X S. The hormonal control of regeneration in plants[J]. Current Topics in Developmental Biology, 2014(108):35-69. DOI: 10.1016/B978-0-12-391498-9.00010-3.
doi: 10.1016/B978-0-12-391498-9.00010-3 |
[4] |
Momoko I, Keiko S, Akira I. Plant callus: mechanisms of induction and repression[J]. The Plant cell, 2013, 25(9):59-73. DOI: 10.1105/tpc.113.116053.
doi: 10.1105/tpc.113.116053 |
[5] |
Ge X Y, Zhang C J, Wang Q H, et al. iTRAQ protein profile differential analysis between somatic globular and cotyledonary embryos reveals stress, hormone, and respiration involved in increasing plantlet regeneration of Gossypium hirsutum L.[J]. Journal of Proteome Research, 2015, 14(1):68-78. DOI: 10.1021/pr500688g.
doi: 10.1021/pr500688g |
[6] |
Su Y H, Su Y X, Liu Y G, et al. Abscisic acid is required for somatic embryo initiation through mediating spatial auxin response in Arabidopsis[J]. Plant Growth Regulation, 2013, 69(2): 167-176 DOI: 10.1007/s10725-012-9759-2.
doi: 10.1007/s10725-012-9759-2 |
[7] |
Pullman G S, Namjoshi K, Zhang Y. Somatic embryogenesis in loblolly pine (Pinus taeda L.): improving culture initiation with abscisic acid and silver nitrate[J]. Plant Cell Reports, 2003, 22(2):85-95. DOI: 10.1007/s00299-003-0673-y.
doi: 10.1007/s00299-003-0673-y pmid: 12879261 |
[8] | 姜华, 陈静, 高晓玲, 等. ABA对水稻愈伤组织、不定胚发育及其植株再生的影响[J]. 作物学报, 2006(9):1379-1383. |
Jiang Hua, Chen Jing, Gao Xiaoling, et al. Effect of ABA on rice callus and development of somatic embryo and plant regeneration[J]. Acta Agronomica Sinica, 2006(9):1379-1383. | |
[9] |
Alwael H A, Naik P M, Al-Khayri J M. Synchronization of somatic embryogenesis in date palm suspension culture using abscisic acid[M]//Al-Khayri J M, Jain S, Johnson D. Date palm biotechnology protocols volume I. Methods in molecular biology. New York: Humana Press, 2017. DOI: 10.1007/978-1-4939-7156-5_18.
doi: 10.1007/978-1-4939-7156-5_18 |
[10] | 韩碧文, 李颖章. 植物组织培养中器官建成的生理生化基础[J]. 植物学通报, 1993, 10(2):1-6. |
Han Biwen, Li Yingzhang. Organogenesis in vitro, physiological and biochemical aspects[J]. Chinese Bulletin of Botany, 1993, 10(2):1-6. | |
[11] |
王兴春, 李宏, 王敏, 等. 植物体细胞胚胎发生的调控网络[J]. 生物工程学报, 2010, 26(2):141-146. DOI: 10.13345/j.cjb.2010.02.005.
doi: 10.13345/j.cjb.2010.02.005 |
Wang Xingchun, Li Hong, Wang Min, et al. Regulatory networks of somatic embryogenesis in plant[J]. Chinese Journal of Biotechnology, 2010, 26(2):141-146.
doi: 10.13345/j.cjb.2010.02.005 |
|
[12] |
Liu J, Hu X M, Qin P, et al. The WOX11-LBD16 pathway promotes pluripotency acquisition in callus cells during de novo shoot regeneration in Arabidopsis tissue culture[J]. Plant and Cell Physiology, 2018, 59(4):734-743. DOI: 10.1093/pcp/pcy010.
doi: 10.1093/pcp/pcy010 |
[13] |
Kim B, Remko O, Vijay K. S, et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth[J]. The Plant Cell, 2002, 14(8):1737-1749. DOI: 10.1105/tpc.00194.
doi: 10.1105/tpc.00194 |
[14] |
Anneke H, Li M F, Iris H, et al. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis[J]. Plant Physiology, 2017, 175(2):848-857. DOI: 10.1104/pp.17.00232.
doi: 10.1104/pp.17.00232 |
[15] |
Dhiraj T, Tang W N, Kristine H, et al. The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in Arabidopsis and soybean[J]. Plant Physiology, 2008, 146(4):1663-1672. DOI: 10.1104/pp.108.115832.
doi: 10.1104/pp.108.115832 |
[16] |
Yang Z R, Li C F, Wang Y, et al. GhAGL15s, preferentially expressed during somatic embryogenesis, promote embryogenic callus formation in cotton (Gossypium hirsutum L.)[J]. Molecular genetics and genomics, 2014, 289(5):873-883. DOI: 10.1007/s00438-014-0856-y.
doi: 10.1007/s00438-014-0856-y |
[17] |
Pelletier J M, Kwong R W, Park S, et al. LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(32):E6710-E6719. DOI: 10.1073/pnas.1707957114.
doi: 10.1073/pnas.1707957114 |
[18] | Zhang W, Zhang X Y, Yang Z R, et al. AtWuschel promotes formation of the embryogenic callus in Gossypium hirsutum[J/OL]. PLoS One, 2014, 9(1): e87502 (2014-01-31)[2019-05-07]. http://doi.org/10.1371/journal.pone.0087502 . |
[19] |
Hatzopoulos P, Fong F, Sung Z R. Abscisic acid regulation of DC8, a carrot embryonic gene[J]. Plant Physiology, 1990, 94(2):690-695. DOI: 10.1104/pp.94.2.690.
doi: 10.1104/pp.94.2.690 pmid: 16667766 |
[20] |
Nambara E, Hayama R, Tsuchiya Y, et al. The role of ABI3 and FUS3 loci in Arabidopsis thaliana on phase transition from late embryo development to germination[J]. Developmental Biology, 2000, 220(2):412-423. DOI: 10.1006/dbio.2000.9632.
doi: 10.1006/dbio.2000.9632 pmid: 10753527 |
[21] |
Sugiyama M. Historical review of research on plant cell dedifferentiation[J]. Journal of Plant Research, 2015, 128:349-359. DOI: 10.1007/s10265-015-0706-y.
doi: 10.1007/s10265-015-0706-y |
[22] |
Shang H H, et al. Histological and ultrastructural observation reveals significant cellular differences between Agrobacterium transformed embryogenic and non-embryogenic calli of cotton[J]. Journal of integrative plant biology, 2009, 51(5):456-465. DOI: 10.1111/j.1744-7909.2009.00824.x.
doi: 10.1111/j.1744-7909.2009.00824.x |
[23] |
Wang Lichen, Liu Nian, Wang Tianyi, et al. The GhmiR157a-GhSPL10 regulatory module controls initial cellular dedifferentiation and callus proliferation in cotton by modulating ethylene-mediated flavonoid biosynjournal[J]. Journal of Experimental Botany, 2018, 69(5):1081-1093.
doi: 10.1093/jxb/erx475 pmid: 29253187 |
[24] | 丁颜朋. 红光对体胚发生的影响及在棉花组培中的应用[D]. 保定: 河北农业大学, 2019. |
Ding Yanpeng. Effect of red light on somatic embryogenesis and its application in cotton tissue culture[D]. Baoding: Hebei Agricultural University, 2019. | |
[25] |
Yang X Y, Zhang X L, Yang D J. Transcript profiling reveals complex auxin signaling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton[J]. BMC Plant Biology, 2012, 12(1):110. DOI: 10.1186/1471-2229-12-110.
doi: 10.1186/1471-2229-12-110 |
[26] |
Fan M Z, Xu C Y, Xu K, et al. LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration[J]. Cell Research, 2012, 22(7):1169-80. DOI: 10.1038/cr.2012.63.
doi: 10.1038/cr.2012.63 |
[27] | 陈军营, 文付喜, 何盛莲, 等. ABA和AgNO3对小麦幼胚愈伤组织诱导和分化的影响[J]. 麦类作物学报, 2006(2):46-48. |
Chen Junying, Wen Fuxi, He Shenglian, et al. Effect of ABA and AgNO3 on callus induction and differentiation of immature wheat embryo[J]. Journal of Triticeae Crops, 2006(2):46-48. | |
[28] |
周玲艳, 秦华明, 谢俊平, 等. 提高水稻愈伤组织再生频率的研究[J]. 种子, 2006(7):28-31, 35. DOI: 10.16590/j.cnki.1001-4705.2006.07.044.
doi: 10.16590/j.cnki.1001-4705.2006.07.044 |
Zhou Lingyan, Qin Huaming, Xie Junping, et al. Study on the enhancement of regeneration frequency of callus in rice[J]. Seed, 2006(7):28-31, 35.
doi: 10.16590/j.cnki.1001-4705.2006.07.044 |
|
[29] |
Sun L F, Wu Y, Zhou H D, et al. Comparative proteomic analysis of the H99 inbred maize ( Zea mays L.) line in embryogenic and non-embryogenic callus during somatic embryogenesis[J]. Plant Cell Tissue and Organ Culture (PCTOC), 2013, 113(1):103-119. DOI: 10.1007/sl.1240-012-0255-1.
doi: 10.1007/sl.1240-012-0255-1 |
[30] |
Hiroshi K, Hiroshi H. Changes in the endogenous level and effects of abscisic acid during somatic embryogenesis of Daucus Carota L.[J]. Plant and Cell Physiology, 1981, 22(8):1423-1429. DOI: 10.1093/oxfordjournals.pcp.a076295.
doi: 10.1093/oxfordjournals.pcp.a076295 |
[31] |
魏喜, 王倩华, 葛晓阳, 等. 不同红蓝配比的光质对棉花体细胞胚胎发生和植株再生的影响[J]. 中国农业科学, 2019, 52(6):968-980. DOI: 10.3864/j.issn.0578-1752.2019.06.002.
doi: 10.3864/j.issn.0578-1752.2019.06.002 |
Wei Xi, Wang Qianhua, Ge XiaoYang, et al. Effects of different red and blue ratios on the somatic embryogenesis and plant regeneration of cotton[J]. Scientia Agricultura Sinica, 2019, 52(6):968-980.
doi: 10.3864/j.issn.0578-1752.2019.06.002 |
[1] | 姜辉,郑锦秀,王永翠,张超,王秀丽,陈莹,高明伟,王家宝,柴启超,赵军胜. 陆地棉L-D1等位基因特异性分子标记的开发及应用[J]. 棉花学报, 2021, 33(5): 412-421. |
[2] | 卞英杰,王寒涛,魏恒玲,张蒙,李弈,喻树迅. 陆地棉叶片发育相关基因GhRH39克隆与功能分析[J]. 棉花学报, 2021, 33(4): 319-327. |
[3] | 程成,李斌,王雅丽,赵楠,苏莹,聂虎帅,华金平. 转FBP7::iaaM基因陆地棉育种应用初报[J]. 棉花学报, 2021, 33(4): 368-376. |
[4] | 徐鹏,郭琪,徐珍珍,孟珊,陈天子,沈新莲. 基于重测序鉴定SbHKT基因在陆地棉基因组中的插入位点[J]. 棉花学报, 2021, 33(4): 377-383. |
[5] | 薛羽君, 魏恒玲, 王寒涛, 马亮, 程帅帅, 郝蓬勃, 顾丽姣, 付小康, 芦建华, 喻树迅. 棉花核酸外切酶基因GhWRN的克隆及功能验证[J]. 棉花学报, 2021, 33(3): 189-199. |
[6] | 吕丽敏, 左东云, 王省芬, 张友平, 程海亮, 王巧连, 宋国立, 马峙英. 陆地棉纤维发育相关基因GhEXPs的分析及表达研究[J]. 棉花学报, 2021, 33(3): 280-290. |
[7] | 石荣康,张冬梅,孙正文,刘正文,解美霞,张艳,马峙英,王省芬. 陆地棉REM基因家族全基因组鉴定及表达分析[J]. 棉花学报, 2021, 33(2): 95-111. |
[8] | 窦玲玲,孙亚如,赵琴,田瑞洁,康洋洋,朱怡然,杨蕾蕾,王彩虹,冯宇,王文博,肖光辉. 陆地棉Nudix基因家族的全基因组鉴定及表达分析[J]. 棉花学报, 2021, 33(2): 112-123. |
[9] | 贾晓昀,王士杰,赵红霞,朱继杰,李妙,王国印. 陆地棉株型及生育期相关性状QTL定位[J]. 棉花学报, 2021, 33(2): 124-133. |
[10] | 郭晓豪,王寒涛,魏鑫,张晶晶,付小康,马亮,魏恒玲,喻树迅. 基于两个陆地棉低世代群体定位纤维品质相关QTL[J]. 棉花学报, 2021, 33(1): 33-42. |
[11] | 张爱,王彩香,宿俊吉,张先亮,史春辉,刘娟娟,彭云玲,马雄风. 陆地棉MADS-box家族基因鉴定及组织特异性表达分析[J]. 棉花学报, 2020, 32(5): 404-404. |
[12] | 琚龙贞,赵汀,方磊,胡艳,张天真. 陆地棉Dof基因家族的全基因组鉴定及分析[J]. 棉花学报, 2020, 32(4): 279-291. |
[13] | 杨永飞,葛常伟,沈倩,张思平,刘绍东,马慧娟,陈静,刘瑞华,李士丛,赵新华,李志坤,庞朝友. 陆地棉苗期低温响应基因GhZAT10的克隆及功能研究[J]. 棉花学报, 2020, 32(4): 305-315. |
[14] | 潘奥,王静静,孙福来,张景霞,高阳,杜召海,焦梦佳,张军,王芙蓉,刘志. 陆地棉NF-YA基因家族的全基因组鉴定与功能分析[J]. 棉花学报, 2020, 32(4): 316-328. |
[15] | 张李鹏,张石定,许鹏,李现常,张震,范森淼,龚举武,袁有禄,商海红,邹华文. 傅里叶变换红外显微光谱(Micro-FTIR)和X射线衍射(XRD)用于测定棉花结晶度效果比较[J]. 棉花学报, 2020, 32(4): 370-380. |
|