棉花学报 ›› 2021, Vol. 33 ›› Issue (2): 124-133.doi: 10.11963/1002-7807.jxywgy.20210226
收稿日期:
2020-09-27
出版日期:
2021-03-15
发布日期:
2021-04-07
通讯作者:
李妙,王国印
E-mail:jiaxiaoyun1987@163.com;limiao2003@sina.com;wgy1963@vip.sina.com
作者简介:
贾晓昀(1987―),男,博士, 基金资助:
Jia Xiaoyun(),Wang Shijie,Zhao Hongxia,Zhu Jijie,Li Miao(
),Wang Guoyin(
)
Received:
2020-09-27
Online:
2021-03-15
Published:
2021-04-07
Contact:
Li Miao,Wang Guoyin
E-mail:jiaxiaoyun1987@163.com;limiao2003@sina.com;wgy1963@vip.sina.com
摘要:
【目的】 为了深入分析棉花株型及生育期相关性状的分子遗传机制,加速适机采棉花新品种分子标记辅助育种进程。【方法】 通过构建包含413个单株的F2群体,结合高密度SNP(Single nucleotide polymorphism,单核苷酸多态性)遗传图谱,开展株高(Plant height,PH)、第一果枝节位(Node of the first fruiting branch,NFFB)及其高度(Height of NFFB,HNFFB)、第四果枝第一果节长度(First node length of the forth fruiting branch,FNLFFB)、第七果枝第一果节长度(First node length of the seventh fruiting branch,FNLSFB)等5个株型性状和开花期(Flowering time,FT)、花铃期(Flowering to boll-opening period,FBP)、全生育期(Whole growth period,WGP)等3个生育期性状的QTL(Quantitative trait loci,数量性状位点)定位研究。【结果】 8个性状均呈现连续的双向超亲分布,性状之间存在广泛的正向相关性,PH与其他株型性状均为极显著正相关,NFFB与3个生育期相关性状均为显著或极显著正相关。共定位到36个加性QTL(Additive QTL,aQTL)位点,包括14个PH相关aQTL、6个NFFB相关aQTL、3个HNFFB相关aQTL、5个FNLFFB相关aQTL、3个FNLSFB相关aQTL、2个FT相关aQTL、2个FBP相关aQTL、1个WGP相关aQTL,单个aQTL贡献率为1.70%~10.38%。这些aQTL分布于20条染色体,每条染色体有1~4个aQTL。发现3个aQTL重叠区段,分别为A11染色体的qNFFB-A11-1与qWGP-A11-1、D3染色体的qHNFFB-D3-1与qPH-D3-1、D8染色体的qNFFB-D8-1与qFNLSFB-D8-1。检测到263个上位性QTL(Epistatic QTL,eQTL),单个eQTL的贡献率为1.17%~6.19%;19个aQTL与21个eQTL位置重叠;At基因组分布有17个aQTL和202个eQTL,Dt基因组分布有19个aQTL和61个eQTL。【结论】 本研究为探索棉花株型的分子遗传机制奠定了研究基础,为机采棉分子标记辅助育种提供理论指导。
贾晓昀,王士杰,赵红霞,朱继杰,李妙,王国印. 陆地棉株型及生育期相关性状QTL定位[J]. 棉花学报, 2021, 33(2): 124-133.
Jia Xiaoyun,Wang Shijie,Zhao Hongxia,Zhu Jijie,Li Miao,Wang Guoyin. QTL analysis for Gossypium hirsutum L. plant architecture and growth period traits[J]. Cotton Science, 2021, 33(2): 124-133.
表1
亲本及群体性状的基本统计量"
性状 Trait | 冀丰914 Jifeng 914 | 冀丰817 Jifeng 817 | F1 | F2群体 F2 population | ||||||
最大值 Maximum | 最小值 Minimum | 平均值 Mean | 峰度 Kurt | 偏度 Skew | 标准差 SD | 变异系数 CV /% | ||||
株高PH /cm | 106.50** | 74.40 | 88.00 | 107.00 | 55.00 | 77.94 | 0.37 | 0.15 | 8.76 | 11.24 |
第一果枝节位NFFB | 8.10** | 5.30 | 6.60 | 9.00 | 5.00 | 6.58 | -0.37 | 0.25 | 0.88 | 13.31 |
第一果枝节位高度HNFFB /cm | 33.30** | 19.50 | 25.50 | 37.00 | 16.00 | 25.46 | 0.21 | 0.31 | 3.80 | 14.93 |
第四果枝第一果节长度FNLFFB /cm | 11.50** | 9.69 | 9.69 | 16.00 | 3.50 | 10.17 | 0.55 | -0.08 | 1.89 | 18.55 |
第七果枝第一果节长度FNLSFB /cm | 16.81** | 14.13 | 15.25 | 19.00 | 6.00 | 14.19 | 0.32 | -0.36 | 2.21 | 15.58 |
开花期FT /d | 68.00** | 63.00 | 64.00 | 74.00 | 59.00 | 64.98 | 0.91 | 0.60 | 2.51 | 3.86 |
花铃期FBP /d | 46.00 | 45.00 | 48.00 | 60.00 | 41.00 | 46.90 | 0.95 | 0.51 | 2.87 | 6.12 |
全生育期WGP /d | 114.00** | 108.00 | 112.00 | 122.00 | 103.00 | 111.95 | -0.41 | 0.25 | 3.76 | 3.36 |
表2
各性状之间的相关性分析"
性状 Trait | 第一果枝节位NFFB | 第一果枝节位高度HNFFB | 第四果枝第一果节长度FNLFFB | 第七果枝第一果节长度FNLSFB | 开花期FT | 全生育期WGP | 花铃期FBP |
株高PH | 0.27** | 0.40** | 0.24** | 0.28** | 0.04 | 0.14* | 0.13 |
第一果枝节位NFFB | 0.45** | 0.19** | 0.09 | 0.39** | 0.39** | 0.16* | |
第一果枝节位高度HNFFB | 0.26** | 0.06 | 0.20** | 0.14* | 0.14* | ||
第四果枝第一果节长度FNLFFB | 0.22** | 0.26** | 0.24** | 0.07 | |||
第七果枝第一果节长度FNLSFB | 0.07 | 0.21** | 0.18* | ||||
开花期FT | 0.64** | -0.05 | |||||
全生育期WGP | 0.74** |
表4
株型及生育期相关性状加性QTL信息"
QTL | 位置Position /cM | 标记区间 Marker interval | LOD | PVE/% | 加性效应 Additive effect | 显性效应 Dominance effect |
qPH-A3-1 | 135 | chr3_1548931, chr3_1476772 | 5.98 | 4.52 | -2.71 | 0.62 |
qPH-A7-1 | 119 | chr7_27731999, chr7_27724172 | 2.84 | 2.09 | -0.29 | 3.33 |
qPH-A7-2 | 132 | chr7_27506913, chr7_27491483 | 5.44 | 4.06 | -2.54 | 0.01 |
qPH-A9-1 | 120 | chr9_9149198, chr9_9148352 | 4.68 | 3.47 | -2.62 | 0.50 |
qPH-A12-1 | 0 | chr12_102749491, chr12_98602993 | 3.33 | 2.41 | 2.45 | 1.08 |
qPH-A12-2 | 100 | chr12_10275320, chr12_10275283 | 3.21 | 2.34 | 0.14 | -3.58 |
qPH-D2-1 | 79 | chr15_61550540, chr15_61257609 | 10.85 | 8.53 | -0.72 | -6.30 |
qPH-D3-1 | 166 | chr16_476746, chr16_458423 | 5.86 | 4.44 | -0.74 | 4.50 |
qPH-D5-1 | 35 | chr18_59350612, chr18_59325835 | 10.86 | 8.62 | -0.15 | -7.34 |
qPH-D6-1 | 0 | chr19_66130524, chr19_66088220 | 4.38 | 3.17 | 1.95 | 1.91 |
qPH-D9-1 | 68 | chr22_7471165, chr22_7471136 | 2.50 | 1.70 | -1.85 | -1.82 |
qPH-D9-2 | 93 | chr22_4935002, chr22_4934977 | 2.54 | 1.72 | -1.68 | -1.07 |
qPH-D12-1 | 10 | chr25_61231862, chr25_61214495 | 11.97 | 9.64 | -3.82 | -0.63 |
qPH-D13-1 | 86 | chr26_5187791, chr26_5187272 | 2.57 | 1.77 | -0.97 | 2.57 |
qNFFB-A4-1 | 40 | chr4_75497483, chr4_75488413 | 2.81 | 5.03 | -0.04 | 0.39 |
qNFFB-A11-1 | 3 | chr11_119686364, hr11_119649722 | 4.03 | 8.63 | -0.05 | 0.84 |
qNFFB-D8-1 | 139 | chr21_5256024, chr21_5235564 | 3.01 | 5.87 | -0.27 | 0.01 |
qNFFB-D10-1 | 161 | chr23_67766849, chr23_67763158 | 3.51 | 6.71 | -0.31 | -0.20 |
qNFFB-D12-1 | 0 | chr25_62606647, chr25_62552111 | 2.68 | 5.06 | -0.04 | -0.45 |
qNFFB-D12-2 | 138 | chr25_2807174, chr25_2714956 | 2.57 | 4.74 | -0.17 | -0.26 |
qHNFFB-A12-1 | 123 | chr12_6731022, chr12_6730960 | 3.00 | 6.18 | 0.40 | -1.97 |
qHNFFB-D3-1 | 166 | chr16_476746, chr16_458423 | 2.71 | 5.61 | -1.02 | 1.05 |
qHNFFB-D8-1 | 96 | chr21_18498192, chr21_18396175 | 3.06 | 6.75 | -0.07 | -2.01 |
qFNLFFB-A2-1 | 12 | chr2_103698699, chr2_103698529 | 2.94 | 7.92 | -0.28 | 0.93 |
qFNLFFB-A6-1 | 122 | chr6_15408592, chr6_15256930 | 5.33 | 10.36 | 0.29 | -1.01 |
qFNLFFB-A6-2 | 162 | chr6_1866817, chr6_1762574 | 5.18 | 10.38 | -0.71 | 0.22 |
qFNLFFB-D8-1 | 135 | chr21_9069514, chr21_9057698 | 3.12 | 6.57 | 0.02 | -1.03 |
qFNLFFB-D11-1 | 100 | chr24_18348995, chr24_18320191 | 2.60 | 4.98 | 0.45 | 0.05 |
qFNLSFB-A9-1 | 63 | chr9_55487483, chr9_55474112 | 2.70 | 5.09 | -0.67 | 0.03 |
qFNLSFB-D8-1 | 139 | chr21_5256024, chr21_5235564 | 3.60 | 7.00 | 0.79 | 0.04 |
qFNLSFB-D10-1 | 146 | chr23_1424459, chr23_1420192 | 3.33 | 6.89 | -0.14 | -1.64 |
qFT-A1-1 | 62 | chr1_73897491, chr1_58969703 | 2.91 | 6.92 | 0.57 | -0.92 |
qFT-A5-1 | 105 | chr5_9894964, chr5_6347382 | 2.89 | 7.55 | -0.78 | 0.16 |
qWGP-A11-1 | 4 | chr11_119649722, hr11_119470012 | 3.12 | 8.11 | -0.32 | 3.06 |
qFBP-A6-1 | 151 | chr6_10042658, chr6_9132338 | 3.63 | 7.22 | -0.91 | -0.97 |
qFBP-D11-1 | 150 | chr24_5461665, chr24_4927424 | 3.48 | 6.29 | 0.93 | 0.13 |
[1] |
张金龙, 董合林, 陈国栋, 等. 不同熟性棉花品种棉铃空间分布及产量品质形成的差异[J]. 西北农业学报, 2017, 26(2):234-241. DOI: 10.7606/j.issn.1004-1389.2017.02.011.
doi: 10.7606/j.issn.1004-1389.2017.02.011 |
Zhang Jinlong, Dong Helin, Chen Guodong, et al. Comparison of boll spatial distribution, yield and fiber quality of cotton cultivars with different maturity[J]. Acta Agrisulturae Boreali-occidentalis Sinica, 2017, 26(2):234-241.
doi: 10.7606/j.issn.1004-1389.2017.02.011 |
|
[2] | 齐子杰. 棉花产量品质及植株性状的典型相关与通径分析[J]. 贵州农业科学, 2009, 37(4):14-16. |
Qi Zijie. The typical correlation between yield, fiber quality and plant characters in cotton and its path analysis[J]. Guizhou Agricultural Sciences, 2009, 37(4):14-16. | |
[3] |
陈民志, 杨延龙, 王宇轩, 等. 新疆早熟陆地棉品种更替过程中的株型特征及主要经济性状的演变[J]. 中国农业科学, 2019, 52(19):3279-3290. DOI: 10.3864/j.issn.0578-1752.2019.19.001.
doi: 10.3864/j.issn.0578-1752.2019.19.001 |
Chen Minzhi, Yang Yanlong, Wang Yuxuan, et al. Plant type characteristics and evolution of main economic characters in early maturing upland cotton cultivar replacement in Xinjiang[J]. Scientia Agricultura Sinica, 2019, 52(19):3279-3290.
doi: 10.3864/j.issn.0578-1752.2019.19.001 |
|
[4] |
Wang Fangyong, Han Huanyong, Lin Hai, et al. Effects of planting patterns on yield, quality, and defoliation in machine-harvested cotton[J]. Journal of Integrative Agriculture, 2019, 18(9):2019-2028. DOI: 10.1016/S2095-3119(19)62604-3.
doi: 10.1016/S2095-3119(19)62604-3 |
[5] |
Kaggwa-Asiimwe Ruth, Andrade-Sanchez Pedro, Wang Guangyao. Plant architecture influences growth and yield response of upland cotton to population density[J]. Field Crops Research, 2013, 145:52-59. DOI: 10.1016/j.fcr.2013.02.005.
doi: 10.1016/j.fcr.2013.02.005 |
[6] |
Qi Haikun, Wang Ning, Qiao Wenqing, et al. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of three plant morphological traits in upland cotton (Gossypium hirsutum L.)[J]. Euphytica, 2017, 213:83. DOI: 10.1007/s10681-017-1867-7.
doi: 10.1007/s10681-017-1867-7 |
[7] |
Su Junji, Li Libei, Zhang Chi, et al. Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton[J]. Theoretical and Applied Genetics, 2018, 131(6):1299-1314. DOI: 10.1007/s00122-018-3079-5.
doi: 10.1007/s00122-018-3079-5 pmid: 29497767 |
[8] | 喻树迅. 无膜棉对中国棉花产业转型升级的意义[J]. 农学学报, 2019, 9(3):1-5. |
Yu Shuxun. The significance of filmless cotton to promote the transformation and upgrading of China's cotton industry[J]. Journal of Agriculture, 2019, 9(3):1-5. | |
[9] |
Li Chengqi, Wang Yuanyuan, Ai Nijiang, et al. A genome-wide association study of early-maturation traits in upland cotton based on the CottonSNP80K array[J]. Journal of Integrative Plant Biology, 2018, 60(10):970-985. DOI: 10.1111/jipb.12673.
doi: 10.1111/jipb.12673 |
[10] | 李成奇, 王清连, 董娜, 等. 棉花株型性状的遗传分析[J]. 江苏农业学报, 2011, 27(1):25-30. |
Li Chengqi, Wang Qinglian, Dong Na, et al. Inheritance of plant architecture traits in upland cotton (G. hirsutum L.)[J]. Jiangsu Journal of Agricultural Sciences, 2011, 27(1):25-30. | |
[11] |
Jia Xiaoyun, Pang Chaoyou, Wei Hengling, et al. High-density linkage map construction and QTL analysis for earliness-related traits in Gossypium hirsutum L.[J]. BMC Genomics, 2016, 17(1):909. DOI: 10.1186/s12864-016-3269-y.
doi: 10.1186/s12864-016-3269-y pmid: 27835938 |
[12] | 范术丽, 喻树迅, 宋美珍, 等. 短季棉早熟性的分子标记及QTL定位[J]. 棉花学报, 2006, 18(3):135-139. |
Fan Shuli, Yu Shuxun, Song Meizhen, et al. Construction of molecular linkage map and QTL mapping for earliness in short season cotton[J]. Cotton Science, 2006, 18(3):135-139. | |
[13] |
Li Chengqi, Wang Xiaoyun, Dong Na, et al. QTL analysis for early-maturing traits in cotton using two upland cotton (Gossypium hirsutum L.) crosses[J]. Breeding Science, 2013, 63(2):154-163. DOI: 10.1270/jsbbs.63.154.
doi: 10.1270/jsbbs.63.154 pmid: 23853509 |
[14] |
Li C, Song L, Zhao H, et al. Quantitative trait loci mapping for plant architecture traits across two upland cotton populations using SSR markers[J]. The Journal of Agricultural Science, 2014, 152(2):275-287. DOI: 10.1017/S0021859613000063.
doi: 10.1017/S0021859613000063 |
[15] |
Ma Jianjiang, Pei Wenfeng, Ma Qifeng, et al. QTL analysis and candidate gene identification for plant height in cotton based on an interspecific backcross inbred line population of Gossypium hirsutum × Gossypium barbadense[J]. Theoretical and Applied Genetics, 2019, 132(9):2663-2676. DOI: 10.1007/s00122-019-03380-7.
doi: 10.1007/s00122-019-03380-7 pmid: 31236630 |
[16] |
Li Huihui, Ye Guoyou, Wang Jiankang. A modified algorithm for the improvement of composite interval mapping[J]. Genetics, 2007, 175(1):361-374. DOI: 10.1534/genetics.106.066811.
doi: 10.1534/genetics.106.066811 pmid: 17110476 |
[17] |
Wang Maojun, Tu Lili, Yuan Daojun, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense[J]. Nature Genetics, 2019, 51(2):224-229. DOI: 10.1038/s41588-018-0282-x.
doi: 10.1038/s41588-018-0282-x pmid: 30510239 |
[18] |
Xie Chen, Mao Xizeng, Huang Jiaju, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases[J]. Nucleic Acids Research, 2011, 39(S2):W316-W322. DOI: 10.1093/nar/gkr483.
doi: 10.1093/nar/gkr483 |
[19] |
Hu Yan, Chen Jiedan, Fang Lei, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton[J]. Nature Genetics, 2019, 51(4):739-748. DOI: 10.1038/s41588-019-0371-5.
doi: 10.1038/s41588-019-0371-5 pmid: 30886425 |
[20] |
Wang Bing, Smith S M, Li Jiayang. Genetic regulation of shoot architecture[J]. Annual Review of Plant Biology, 2018, 69(1):437-468. DOI: 10.1146/annurev-arplant-042817-040422.
doi: 10.1146/annurev-arplant-042817-040422 |
[21] | 陈温福, 徐正进, 张文忠, 等. 水稻新株型创造与超高产育种[J]. 作物学报. 2001, 27(5):665-672. |
Chen Wenfu, Xu Zhengjin, Zhang Wenzhong, et al. Creation of new plant type and breeding rice for super high yield[J]. Acta Agronomica Sinica, 2001, 27(5):665-672. | |
[22] |
齐海坤, 严根土, 王宁, 等. 机采棉杂交后代主要株型性状与产量和品质的关系[J]. 棉花学报, 2017, 29(5):456-465. DOI: 10.11963/1002-7807.qhkhq.20170822.
doi: 10.11963/1002-7807.qhkhq.20170822 |
Qi Haikun, Yan Gentu, Wang Ning, et al. Relation of plant type traits with fiber yield and quality in the crossing population of mechanical-harvested cotton[J]. Cotton Science, 2017, 29(5):456-465.
doi: 10.11963/1002-7807.qhkhq.20170822 |
|
[23] |
齐海坤, 左彦利, 张伯谦, 等. 黄河流域黑龙港植棉区棉花主要产量决策性状分析[J]. 棉花学报, 2020, 32(6):483-490. DOI: 10.11963/1002-7807.qhkxdy.20200713
doi: 10.11963/1002-7807.qhkxdy.20200713 |
Qi Haikun, Zuo Yanli, Zhang Boqian, et al. Analysis of the main decision characters of cotton yield in Heilonggang cotton region of the Yellow River Basin[J]. Cotton Science, 2020, 32(6):483-490.
doi: 10.11963/1002-7807.qhkxdy.20200713 |
|
[24] |
张冬梅, 张艳军, 李存东, 等. 论棉花轻简化栽培[J]. 棉花学报, 2019, 31(2):163-168. DOI: 10.11963/1002-7807.zdmdhz.20190313.
doi: 10.11963/1002-7807.zdmdhz.20190313 |
Zhang Dongmei, Zhang Yanjun, Li Cundong, et al. On light and simplified cotton cultivation[J]. Cotton Science, 2019, 31(2):163-168.
doi: 10.11963/1002-7807.zdmdhz.20190313 |
|
[25] |
Guo Yufang, Mccarty J C, Jenkins J N, et al. QTLs for node of first fruiting branch in a cross of an upland cotton, Gossypium hirsutum L., cultivar with primitive accession Texas 701[J]. Euphytica, 2008, 163(1):113-122. DOI: 10.1007/s10681-007-9613-1.
doi: 10.1007/s10681-007-9613-1 |
[26] |
Guo Yufang, Mccarty J C, Jenkins J N, et al. Genetic detection of node of first fruiting branch in crosses of a cultivar with two exotic accessions of upland cotton[J]. Euphytica, 2009, 166(3):317-329. DOI: 10.1007/s10681-008-9809-z.
doi: 10.1007/s10681-008-9809-z |
[27] | Li Libei, Zhao Shuqi, Su Junji, et al. High-density genetic linkage map construction by F2 populations and QTL analysis of early-maturity traits in upland cotton(Gossypium hirsutum L.)[J/OL]. PLoS One, 2017, 12(8): e182918 (2017-08-15)[2020-09-25]. https://doi.org/10.1371/journal.pone.0182918 . |
[28] | 纪从亮, 俞敬忠, 刘友良, 等. 棉花高产品种的株型特征研究[J]. 棉花学报, 2000, 12(5):234-237. |
Ji Congliang, Yu Jingzhong, Liu Youliang, et al. Study on the plant type characteristics of high yielding cotton varieties[J]. Cotton Science, 2000, 12(5):234-237. | |
[29] |
Zhang Tianzhen, Hu Yan, Jiang Wenkai, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement[J]. Nature Biotechnology, 2015, 33(5):531-537. DOI: 10.1038/nbt.3207.
doi: 10.1038/nbt.3207 pmid: 25893781 |
[1] | 姜辉,郑锦秀,王永翠,张超,王秀丽,陈莹,高明伟,王家宝,柴启超,赵军胜. 陆地棉L-D1等位基因特异性分子标记的开发及应用[J]. 棉花学报, 2021, 33(5): 412-421. |
[2] | 卞英杰,王寒涛,魏恒玲,张蒙,李弈,喻树迅. 陆地棉叶片发育相关基因GhRH39克隆与功能分析[J]. 棉花学报, 2021, 33(4): 319-327. |
[3] | 程成,李斌,王雅丽,赵楠,苏莹,聂虎帅,华金平. 转FBP7::iaaM基因陆地棉育种应用初报[J]. 棉花学报, 2021, 33(4): 368-376. |
[4] | 徐鹏,郭琪,徐珍珍,孟珊,陈天子,沈新莲. 基于重测序鉴定SbHKT基因在陆地棉基因组中的插入位点[J]. 棉花学报, 2021, 33(4): 377-383. |
[5] | 薛羽君, 魏恒玲, 王寒涛, 马亮, 程帅帅, 郝蓬勃, 顾丽姣, 付小康, 芦建华, 喻树迅. 棉花核酸外切酶基因GhWRN的克隆及功能验证[J]. 棉花学报, 2021, 33(3): 189-199. |
[6] | 吕丽敏, 左东云, 王省芬, 张友平, 程海亮, 王巧连, 宋国立, 马峙英. 陆地棉纤维发育相关基因GhEXPs的分析及表达研究[J]. 棉花学报, 2021, 33(3): 280-290. |
[7] | 石荣康,张冬梅,孙正文,刘正文,解美霞,张艳,马峙英,王省芬. 陆地棉REM基因家族全基因组鉴定及表达分析[J]. 棉花学报, 2021, 33(2): 95-111. |
[8] | 窦玲玲,孙亚如,赵琴,田瑞洁,康洋洋,朱怡然,杨蕾蕾,王彩虹,冯宇,王文博,肖光辉. 陆地棉Nudix基因家族的全基因组鉴定及表达分析[J]. 棉花学报, 2021, 33(2): 112-123. |
[9] | 郭晓豪,王寒涛,魏鑫,张晶晶,付小康,马亮,魏恒玲,喻树迅. 基于两个陆地棉低世代群体定位纤维品质相关QTL[J]. 棉花学报, 2021, 33(1): 33-42. |
[10] | 刘佩佩,魏喜,陈艳丽,王晔,张桂寅,李付广. 脱落酸对棉花体细胞胚胎发生的影响[J]. 棉花学报, 2021, 33(1): 42-53. |
[11] | 张爱,王彩香,宿俊吉,张先亮,史春辉,刘娟娟,彭云玲,马雄风. 陆地棉MADS-box家族基因鉴定及组织特异性表达分析[J]. 棉花学报, 2020, 32(5): 404-404. |
[12] | 琚龙贞,赵汀,方磊,胡艳,张天真. 陆地棉Dof基因家族的全基因组鉴定及分析[J]. 棉花学报, 2020, 32(4): 279-291. |
[13] | 杨永飞,葛常伟,沈倩,张思平,刘绍东,马慧娟,陈静,刘瑞华,李士丛,赵新华,李志坤,庞朝友. 陆地棉苗期低温响应基因GhZAT10的克隆及功能研究[J]. 棉花学报, 2020, 32(4): 305-315. |
[14] | 潘奥,王静静,孙福来,张景霞,高阳,杜召海,焦梦佳,张军,王芙蓉,刘志. 陆地棉NF-YA基因家族的全基因组鉴定与功能分析[J]. 棉花学报, 2020, 32(4): 316-328. |
[15] | 张李鹏,张石定,许鹏,李现常,张震,范森淼,龚举武,袁有禄,商海红,邹华文. 傅里叶变换红外显微光谱(Micro-FTIR)和X射线衍射(XRD)用于测定棉花结晶度效果比较[J]. 棉花学报, 2020, 32(4): 370-380. |
|