棉花学报 ›› 2019, Vol. 31 ›› Issue (2): 138-146.doi: 10.11963/1002-7807.hslx.20190319
洪帅1(),张泽1,张立福3,马露露2,海兴岩1,王振1,张辉1,吕新1,*(
)
收稿日期:
2018-03-15
出版日期:
2019-03-15
发布日期:
2019-03-15
通讯作者:
吕新
E-mail:1445102819@qq.com;lxshz@126.com
作者简介:
洪帅(1991—),男,硕士, 基金资助:
Hong Shuai1(),Zhang Ze1,Zhang Lifu3,Ma Lulu2,Hai Xingyan1,Wang Zhen1,Zhang Hui1,Lü Xin1,*(
)
Received:
2018-03-15
Online:
2019-03-15
Published:
2019-03-15
Contact:
Lü Xin
E-mail:1445102819@qq.com;lxshz@126.com
摘要:
【目的】利用高光谱数据对新疆北方地区不同生育时期滴灌棉花冠层叶片叶绿素含量进行估测,建立生长时序的叶绿素含量估算模型。【方法】以新陆早45号为试验材料,测定不同施氮水平和生育时期棉花冠层叶片叶绿素含量及对应的光谱反射率,分析了12种指数与叶绿素含量的关系,构建了滴灌棉花冠层叶片叶绿素含量的估测模型。【结果】棉花的4个生育时期(现蕾期、盛蕾期、花铃期和吐絮期)中冠层叶片叶绿素含量与Vogelmann红边指数1的相关系数都高,分别是0.944、0.907、0.895、0.930;采用多元回归方法建立的模型精度高于单指数线性模型,其决定系数都大于0.8,且均方根误差(RMSE)都较小。现蕾期模型(y=82.509x1+89.937x2-94.438)精度最好。【结论】针对不同生育时期建立的模型均可对棉花冠层叶片叶绿素含量进行估测,其中现蕾期模型监测效果最好。
洪帅,张泽,张立福,马露露,海兴岩,王振,张辉,吕新. 滴灌棉花不同生育时期冠层叶片叶绿素含量的高光谱估测模型[J]. 棉花学报, 2019, 31(2): 138-146.
Hong Shuai,Zhang Ze,Zhang Lifu,Ma Lulu,Hai Xingyan,Wang Zhen,Zhang Hui,Lü Xin. Hyperspectral Estimation Model of Chlorophyll Content in Cotton Canopy Leaves under Drip Irrigation at Different Growth Stages[J]. Cotton Science, 2019, 31(2): 138-146.
表1
光谱指数计算公式"
光谱指数 Spectral index | 缩写 Abbreviation | 计算公式 Computational formula | 文献来源 References |
比值植被指数 Ratio vegetation index | RVI | R780/R690 | [ |
Vogelmann红边指数1 Red edge index 1 | VOG1 | R780/R740 | [ |
Vogelmann红边指数2 Red edge index 2 | VOG2 | (R734-R747)/(R715+R726) | [ |
线性内插法红边位置 Red edge position: linear interpolation method | REIP | 700+40×[(R670+R780)/2-R700]/(R740-R700) | [ |
转换叶绿素吸收反射率指数 Transformed chlorophyll absorption reflectance index | TCARL | 3×[(R700-R670)-0.2×(R700-R550)](R700/R670) | [ |
改进叶绿素吸收反射率指数 Modified chlorophyll absorption reflectance index | MCARL | [(R700-R670)-0.2×(R700-R550)](R700/R670) | [ |
红边一阶导数光谱最大值 Maximum of the first derivative spectral in red edge area | Dr | 波长680~760 nm内(红边)一阶导数光谱最大值 Maximum of the first derivative spectra in wavelength 680-760 nm (red edge) | [ |
红边一阶导数光谱的积分 Integral of the first derivative spectra in red edge area | SDr | 波长680~760 nm内(红边)一阶导数光谱的积分 Integral of the first derivative spectra in wavelength 680-760 nm (red edge) | [ |
蓝边一阶导数光谱最大值 Maximum of the first derivative spectral in blue edge area | Db | 波长490~530 nm内(蓝边)一阶导数光谱最大值 Maximum of the first derivative spectra in wavelength 490-530 nm (blue edge) | [ |
蓝边一阶导数光谱的积分 Integral of the first derivative spectra in blue edge area | SDb | 波长490~530 nm内(蓝边)一阶导数光谱的积分 Integral of the first derivative spectra of wavelength 490-530 nm (blue edge) | [ |
绿峰红谷反射率比值 Ratio between green peak reflectance and red valley reflectance | Rg/Rr | 绿峰反射率(Rg)与红谷反射率(Rr)的比值 Ratio between green peak reflectance (Rg) and red valley reflectance (Rr) | [ |
绿峰红谷反射率归一化值 Normalized reflectance of green peak and red valley | (Rg-Rr)/(Rg+Rr) | 绿峰反射率(Rg)与红谷反射率(Rr)的归一化值 Normalized values of green peak reflectance (Rg) and red valley reflectance (Rr) | [ |
表2
不同生育时期叶绿素含量和光谱指数的相关系数"
光谱指数 Spectral index | 现蕾期 Budding stage | 盛蕾期 Flourishing budding stage | 花铃期 Flowering and boll period | 吐絮期 Boll opening stage |
RVI | 0.657 | 0.357 | -0.793 | 0.022 |
VOG1 | 0.944* | 0.907* | 0.895* | 0.930* |
VOG2 | -0.595 | -0.856 | -0.917* | -0.425 |
REIP | 0.748 | 0.820 | 0.779 | 0.208 |
TCARL | -0.481 | -0.667 | -0.812 | 0.022 |
MCARL | -0.481 | -0.667 | -0.812 | 0.022 |
Dr | -0.295 | -0.865 | -0.851 | -0.414 |
SDr | -0.341 | -0.841 | -0.902* | -0.442 |
Db | -0.392 | -0.840 | -0.799 | 0.900* |
SDb | -0.406 | -0.839 | 0.805 | -0.850 |
Rg/Rr | 0.487 | -0.280 | -0.143 | -0.789 |
(Rg-Rr)/(Rg+Rr) | 0.477 | -0.293 | -0.140 | -0.793 |
表3
叶绿素含量和光谱指数的反演模型"
生育时期 Growth stages | 模型类型 Types of models | 回归方程 Regression equation | 决定系数 R2 | 均方根误差 RMSE |
现蕾期 | R-RVI | y=0.225 7x-0.261 6 | 0.432 | 0.16 |
Budding stage | R-VOG1 | y=60.18x-67.646 | 0.892 | 0.07 |
R-REIP | y=1.196 1x-860.61 | 0.595 | 0.15 | |
R-MSR | y=82.509x1+89.937x2-94.438 | 0.988 | 0.02 | |
盛蕾期Flourishing budding stage | R-VOG1 | y=8.049 2x-7.768 2 | 0.823 | 0.06 |
R-VOG2 | y=-2.033 8x+0.863 6 | 0.732 | 0.08 | |
R-Dr | y=-101.9x+3.279 8 | 0.748 | 0.07 | |
R-MSR | y=8.049x1-7.768 | 0.823 | 0.06 | |
花铃期 Flowering and boll period | R-VOG1 | y=25.34x-28.06 | 0.801 | 0.17 |
R-VOG2 | y=-5.786x-0.641 1 | 0.842 | 0.15 | |
R-SDr | y=-309.63x+6.372 4 | 0.814 | 0.16 | |
R-MSR | y=-3.565x1-177.527x2+2.868 | 0.985 | 0.05 | |
吐絮期 Boll opening stage | R-VOG1 | y=14.930x-15.821 | 0.864 | 0.07 |
R-Db | y=-1 265.1x+3.283 5 | 0.810 | 0.08 | |
R-SDb | y=-1 148x+3.114 | 0.723 | 0.10 | |
R-MSR | y=14.930x1-15.821 | 0.864 | 0.07 |
[1] |
程乾, 黄敬峰, 王人潮, 等. MODIS植被指数与水稻叶面积指数及叶片叶绿素含量相关性研究[J]. 应用生态学报, 2004, 15(8): 1363-1367. https://doi.org/10.13287/j.1001-9332.2004.0288
doi: https://doi.org/10.13287/j.1001-9332.2004.0288 pmid: 15573989 |
Cheng Qian, Huang Jingfeng, Wang Renchao, et al. MODIS vegetation index and leaf area index and chlorophyll content of rice[J]. Chinese Journal of Applied Ecology, 2004, 15(8): 1363-1367.
doi: https://doi.org/10.13287/j.1001-9332.2004.0288 pmid: 15573989 |
|
[2] |
祁亚琴, 吕新, 陈冠文, 等. 基于高光谱植被指数的棉田冠层特征信息估算模型研究[J]. 棉花学报, 2011, 23(2): 167-171. https://doi.org/10.3969/j.issn.1002-7807.2011.05.015
doi: https://doi.org/10.3969/j.issn.1002-7807.2011.05.015 |
Qi Yaqin, Lü Xin, Chen Guanwen, et al. Based on hyperspectral vegetation index, cotton field canopy characteristic information estimation model[J]. Cotton Science, 2011, 23(2): 167-171.
doi: https://doi.org/10.3969/j.issn.1002-7807.2011.05.015 |
|
[3] |
Wessman C A, Aber J D. Foliar analysis using near infrared reflectance spectroscopy[J]. Canadian Journal of Forest Research, 1988, 18(1): 6-11. https://doi.org/10.1139/x88-002
doi: https://doi.org/10.1139/x88-002 |
[4] |
Filella I, Penuelas J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status[J]. International Journal of Remote Sensing, 1994, 15(7): 1459-1470. https://doi.org/10.1080/01431169408954177
doi: https://doi.org/10.1080/01431169408954177 |
[5] |
杨杰, 田永超, 姚霞, 等. 水稻上部叶片叶绿素含量的高光谱估算模型[J]. 生态学报, 2009, 29(12): 6561-6571. https://doi.org/10.3321/j.issn:1000-0933.2009.12.031
doi: https://doi.org/10.3321/j.issn:1000-0933.2009.12.031 |
Yang Jie, Tian Yongchao, Yao Xia, et al. Hyperspectral estimation model of chlorophyll content in upper leaves of rice[J]. Acta Ecologica Sinica, 2009, 29(12): 6561-6571.
doi: https://doi.org/10.3321/j.issn:1000-0933.2009.12.031 |
|
[6] |
田明璐, 班松涛, 常庆瑞, 等. 基于无人机成像光谱仪数据的棉花叶绿素含量反演[J]. 农业机械学报, 2016, 47(11): 285-293. https://doi.org/10.6041/j.issn.1000-1298.2016.11.039
doi: https://doi.org/10.6041/j.issn.1000-1298.2016.11.039 |
Tian Minglu, Ban Songtao, Chang Qingrui, et al. Inversion of Cotton chlorophyll content based on UAV Imaging spectrometer data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11): 285-293.
doi: https://doi.org/10.6041/j.issn.1000-1298.2016.11.039 |
|
[7] |
刘秀英, 熊建利. 基于植被指数的马尾松叶绿素含量估算模型[J]. 西北林学院学报, 2012, 17(3): 44-47. https://doi.org/10.3969/j.issn.1001-7461.2012.03.10
doi: https://doi.org/10.3969/j.issn.1001-7461.2012.03.10 |
Liu Xiuying, Xiong Jianli. Estimation model of chlorophyll content of Pinus massoniana based on vegetation index[J]. Journal of Northwest Forestry University, 2012, 17(3): 44-47.
doi: https://doi.org/10.3969/j.issn.1001-7461.2012.03.10 |
|
[8] |
章曼, 常庆瑞, 张晓华, 等. 不同施肥条件下水稻冠层光谱特征与叶绿素含量的相关性[J]. 西北农业学报, 2015, 24(11): 49-56. https://doi.org/10.7606/j.issn.1004-1389.2015.11.009
doi: https://doi.org/10.7606/j.issn.1004-1389.2015.11.009 |
Zhang Man, Chang Qingrui, Zhang Xiaohua, et al. Relativity between spectral characteristics of rice canopy and leaf green content under different fertilization conditions[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2015, 24(11): 49-56.
doi: https://doi.org/10.7606/j.issn.1004-1389.2015.11.009 |
|
[9] |
吴长山, 童庆禧, 郑兰芬. 水稻、玉米的光谱数据与叶绿素的相关分析[J]. 应用基础与工程科学学报, 2008, 8(1): 31-37.
doi: https://doi.org/10.3969/j.issn.1005-0930.2000.01.005 |
Wu Changshan, Tong Qingxi, Zheng Lanfen. Correlation analysis between chlorophyll and spectral data of rice, maize[J]. Journal of Basic Science and Engineering, 2008, 8(1): 31-37. https://doi.org/10.3969/j.issn.1005-0930.2000.01.005
doi: https://doi.org/10.3969/j.issn.1005-0930.2000.01.005 |
|
[10] |
李辉, 白丹, 张卓, 等. 羊草叶片SPAD值与叶绿素含量的相关分析[J]. 中国农学通报, 2012, 28(2): 27-30. https://doi.org/10.3969/j.issn.1000-6850.2012.02.007
doi: https://doi.org/10.3969/j.issn.1000-6850.2012.02.007 |
Li Hui, Bai Dan, Zhang Zhuo, et al. Analysis of correlation between leaf SPAD value and chlorophyll content of Leymus chinensis[J]. Chinese Agricultural Science Bulletin, 2012, 28(2): 27-30.
doi: https://doi.org/10.3969/j.issn.1000-6850.2012.02.007 |
|
[11] |
姚付启, 张振华, 杨润亚, 等. 基于主成分分析和BP神经网络的法国梧桐叶绿素含量高光谱反演研究[J]. 测绘科学, 2010, 35(1): 109-112. https://doi.org/10.16251/j.cnki.1009-2307.2010.01.065
doi: https://doi.org/10.16251/j.cnki.1009-2307.2010.01.065 |
Yao Fuqi, Zhang Zhenhua, Yang Runya, et al. Research on Platanus orientalis L. chlorophyll concentration estimation with hyperspectral data based on BP-artificial neural network and principal component analysis[J]. Science of Surveying and Mapping, 2010, 35(1): 109-112.
doi: https://doi.org/10.16251/j.cnki.1009-2307.2010.01.065 |
|
[12] |
张露洁, 兰利琼, 卿人韦, 等. 几种重金属离子对组培盾叶薯蓣叶绿素含量的影响[J]. 四川大学学报(自然科学版), 2006, 43(1): 200-205. https://doi.org/10.3969/j.issn.0490-6756.2006.01.036
doi: https://doi.org/10.3969/j.issn.0490-6756.2006.01.036 |
Zhang Lujie, Lan Liqiong, Qing Renwei, et al. Effects of several heavy metal Ions on chlorophyll content in tissue culture of Dioscorea zingiberensis[J]. Journal of Sichuan University (Natural Science Edition), 2006, 43(1): 200-205.
doi: https://doi.org/10.3969/j.issn.0490-6756.2006.01.036 |
|
[13] |
王强, 易秋香. 基于高光谱反射率的棉花冠层叶绿素密度估算[J]. 农业工程学报, 2012, 15(8): 125-132. https://doi.org/10.3969/j.issn.1002-6819.2012.15.020
doi: https://doi.org/10.3969/j.issn.1002-6819.2012.15.020 |
Wang Qiang, Yi Qiuxiang. Estimation of chlorophyll density in cotton canopy based on hyperspectral reflectance[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 15(8): 125-132.
doi: https://doi.org/10.3969/j.issn.1002-6819.2012.15.020 |
|
[14] | 夏天, 周勇, 周清波, 等. 基于高光谱遥感和HJ-1卫星的冬小麦SPAD反演研究[J]. 长江流域资源与环境. 2013, 22(3): 307-313. |
Xia Tian, Zhou Yong, Zhou Qingbo, et al. Winter wheat SPAD inversion based on hyperspectral remote sensing and HJ-1 satellite[J]. Resources and Environment in the Yangtze Basin, 2013, 22(3): 307-313. | |
[15] |
卢霞. 沿海滩涂棉花叶片叶绿素含量高光谱遥感估算模型研究[J]. 安徽农业科学, 2011, 39(12): 7452-7454. https://doi.org/10.3969/j.issn.0517-6611.2011.12.193
doi: https://doi.org/10.3969/j.issn.0517-6611.2011.12.193 |
Lu Xia. Study on hyperspectral remote sensing estimation model of cotton leaf chlorophyll content in coastal beach[J]. Journal of Anhui Agricultural Sciences, 2011, 39(12): 7452-7454.
doi: https://doi.org/10.3969/j.issn.0517-6611.2011.12.193 |
|
[16] |
Person T, Klein H, Itil T. Family and environmental variables as predictors of social outcome in chronic schizophrenia[J]. Comprehensive Psychiatry, 1972, 13(4): 317-334. https://doi.org/10.1016/0010-440X(72)90002-8
doi: https://doi.org/10.1016/0010-440X(72)90002-8 pmid: 5035608 |
[17] | 宁新柱, 邓福军, 林海, 等. 早熟陆地棉新品种——新陆早45号[J]. 中国棉花, 2011, 38(1): 27. |
Ning Xinzhu, Deng Fujun, Lin Hai, et al. Early maturing upland cotton variety— Xinluzao 45[J]. China Cotton, 2011, 38(1): 27. | |
[18] |
Mistele B, Schmidhalter U. Tractor-based quadrilateral spectral reflectance measurements to detect biomass and total aerial nitrogen in winter wheat[J]. Agronomy Journal, 2010, 102(2): 499-506. https://doi.org/10.2134/agronj2009.0282
doi: https://doi.org/10.2134/agronj2009.0282 |
[19] |
Haboudane D, Miller J R, Tremblay N, et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[J]. Remote Sensing of Environment, 2002, 81(2): 416-426. https://doi.org/10.1016/s0034-4257(02)00018-4
doi: https://doi.org/10.1016/s0034-4257(02)00018-4 |
[20] |
Daughtry C S T, Walthall C L, Kim M S, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment, 2000, 74(2): 229-239. https://doi.org/10.1016/S0034-4257(00)00113-9
doi: https://doi.org/10.1016/S0034-4257(00)00113-9 |
[21] |
Vogelmann J E, Rock B N, Moss D M. Red edge spectral measurements from sugar maple leaves[J]. International Journal of Remote Sensing, 1993, 14(8): 1563-1575. https://doi.org/10.1080/01431169308953986
doi: https://doi.org/10.1080/01431169308953986 |
[22] |
王秀珍, 黄敬峰, 李云梅. 水稻地上鲜生物量的高光谱遥感估算模型研究[J]. 作物学报, 2003, 29(6): 815-821. https://doi.org/10.3321/j.issn:0496-3490.2003.06.004
doi: https://doi.org/10.3321/j.issn:0496-3490.2003.06.004 |
Wang Xiuzhen, Huang Jingfeng, Li Yunmei. Study on hyperspectral remote sensing estimation model of rice aboveground fresh biomass[J]. Acta Agronomica Sinica, 2003, 29(6): 815-821.
doi: https://doi.org/10.3321/j.issn:0496-3490.2003.06.004 |
|
[23] |
张希鹤, 李岩, 郁凯, 等. 黄萎病胁迫影响棉花幼苗光合及叶绿素荧光特性的机理[J]. 棉花学报, 2018, 30(2): 136-144. https://doi.org/10.11963/1002-7807.zxhcbl.20180313
doi: https://doi.org/10.11963/1002-7807.zxhcbl.20180313 |
Zhang Xihe, Li Yan, Yu Kai, et al. Mechanism of Verticillium wilt stress on photosynthesis and chlorophyll fluorescence of cotton seedlings[J]. Cotton Science, 2018, 30(2): 136-144.
doi: https://doi.org/10.11963/1002-7807.zxhcbl.20180313 |
|
[24] |
李鹏程, 刘爱忠, 刘敬然, 等. 使用叶绿素仪进行棉花氮营养诊断应注意的几个问题[J]. 中国棉花, 2014, 41(4): 38. https://doi.org/10.3969/j.issn.1000-632X.2014.04.017
doi: https://doi.org/10.3969/j.issn.1000-632X.2014.04.017 |
Li Pengcheng, Liu Aizhong, Liu Jingran, et al. Several problems should be paid attention to in the diagnosis of nitrogen nutrition in cotton with chlorophyll meter[J]. China Cotton, 2014, 41(4): 38.
doi: https://doi.org/10.3969/j.issn.1000-632X.2014.04.017 |
|
[25] |
汪玲, 朱靖蓉, 杨涛, 等. 氮肥施用策略对膜下滴灌棉花叶片叶绿素含量变化的影响[J]. 棉花学报, 2010, 22(5): 454-459. https://doi.org/10.3969/j.issn.1002-7807.2010.05.012
doi: https://doi.org/10.3969/j.issn.1002-7807.2010.05.012 |
Wang Ling, Zhu Jingrong, Yang Tao, et al. Effect of N fertilize strategy on chlorophyll content in leaf of cotton under mulch-film drip irrigation[J]. Cotton Science, 2010, 22(5): 454-459.
doi: https://doi.org/10.3969/j.issn.1002-7807.2010.05.012 |
|
[26] |
王登伟, 黄春燕, 张伟, 等. 高光谱数据与棉花叶绿素含量和叶绿素密度的相关分析[J]. 棉花学报, 2008, 20(5): 368-371. https://doi.org/10.3969/j.issn.1002-7807.2008.05.009
doi: https://doi.org/10.3969/j.issn.1002-7807.2008.05.009 |
Wang Dengwei, Huang Chunyan, Zhang Wei, et al. Correlation analysis of hyperspectral data with chlorophyll content and chlorophyll density in cotton[J]. Cotton Science, 2008, 20(5): 368-371.
doi: https://doi.org/10.3969/j.issn.1002-7807.2008.05.009 |
[1] | 李鸣凤,彭文勇,何华,刘新伟,赵竹青. 外施不同形态硼对棉花吸收利用硼及其他矿质元素的影响[J]. 棉花学报, 2021, 33(5): 385-392. |
[2] | 王燕,张谦,王树林,韩硕,冯国艺,董明,钱玉源,祁虹. 耕层重构对棉田土壤养分、微生物数量与酶活性的影响[J]. 棉花学报, 2021, 33(5): 422-434. |
[3] | 张岚,程琦,梁士辰,邓雨潇,潘玉欣. 棉花UGPase基因鉴定与生物信息学分析[J]. 棉花学报, 2021, 33(4): 337-346. |
[4] | 马怡茹,吕新,祁亚琴,张泽,易翔,陈翔宇,鄢天荥,侯彤瑜. 基于无人机数码图像的机采棉脱叶率监测模型构建[J]. 棉花学报, 2021, 33(4): 347-359. |
[5] | 苟浩琦,马常凯,张迁,范术丽,马启峰,张朝军. 棉花光敏雄性不育系psm5的培育及其育性转变规律[J]. 棉花学报, 2021, 33(4): 360-367. |
[6] | 王林,张强,马江锋,朱玉永,田英,李红,毕显杰,宋敏,王海标,雷天翔,李召虎,田晓莉,杜明伟,张立祯,赵冰梅. 新疆棉区植保无人机喷施棉花脱叶催熟剂效果研究[J]. 棉花学报, 2021, 33(3): 200-208. |
[7] | 王金刚,姜艳,田甜,朱永琪,杨振康,周天航,张文旭,佟炫梦,孙嘉祺,王海江. 减氮配施生物刺激素对棉花产量及氮肥吸收利用的影响[J]. 棉花学报, 2021, 33(3): 209-223. |
[8] | 易翔,张立福,吕新,张泽,田敏,印彩霞,马怡茹,范向龙. 基于无人机高光谱融合连续投影算法估算棉花地上部生物量[J]. 棉花学报, 2021, 33(3): 224-234. |
[9] | 孙璘,海艳,唐晓雪,祖丽皮亚·艾买,焦瑞莲,任毓忠,李国英. 新疆棉花茎腐病的病原鉴定及其生物学特性研究[J]. 棉花学报, 2021, 33(3): 235-246. |
[10] | 党文芳,刘萍,管力慧,杨红梅,牛新湘,李萍,楚敏,娄恺,史应武. 土壤环境因子对棉花根际与内生拮抗细菌存活数量的影响[J]. 棉花学报, 2021, 33(3): 247-257. |
[11] | 杨可心,陈秀叶,刘畅,鹿秀云,郭庆港,马平. 棉花枯萎病菌新生理型菌株毒素鉴定及其活性测定[J]. 棉花学报, 2021, 33(3): 258-268. |
[12] | 安杰,韩迎春,张正贵,冯璐,雷亚平,杨北方,王国平,李小飞,王占彪,邢芳芳,熊世武,辛明华,李亚兵. 不同熟性棉花品种冠层温度分布特点[J]. 棉花学报, 2021, 33(2): 134-143. |
[13] | 孟浩峰,雷长英,张旺锋,张亚黎. 系统调控下棉花比叶重的变化机制[J]. 棉花学报, 2021, 33(2): 144-154. |
[14] | 张友昌,黄晓莉,胡爱兵,李洪菊,冯常辉,李蔚,张贤红,罗艳萍,杨国正. 长江流域麦/油后直播棉花播种时间下限研究[J]. 棉花学报, 2021, 33(2): 155-168. |
[15] | 王广恩,郭丽,钱玉源,刘祎,张曦. 不同咸水利用方式对棉花叶绿素荧光参数及土壤盐分的影响[J]. 棉花学报, 2021, 33(1): 13-21. |
|