棉花学报 ›› 2019, Vol. 31 ›› Issue (2): 147-155.doi: 10.11963/1002-7807.ghhdhz.20190315
宫慧慧(),张玉娟,赵军胜,李振怀,卢合全,徐士振,赵逢涛,孟庆华,董合忠*(
)
收稿日期:
2018-07-19
出版日期:
2019-03-15
发布日期:
2019-03-15
通讯作者:
董合忠
E-mail:gh_yt@126.com;donghezhong@163.com
作者简介:
宫慧慧(1982—),女,硕士研究生,助理研究员, 基金资助:
Gong Huihui(),Zhang Yujuan,Zhao Junsheng,Li Zhenhuai,Lu Hequan,Xu Shizhen,Zhao Fengtao,Meng Qinghua,Dong Hezhong*(
)
Received:
2018-07-19
Online:
2019-03-15
Published:
2019-03-15
Contact:
Dong Hezhong
E-mail:gh_yt@126.com;donghezhong@163.com
摘要:
【目的】间作是提高土地和资源利用率的1种集约化种植方式。本研究旨在探讨棉花/芝麻间作的优劣势,并寻找棉花/芝麻间作最佳种植模式。【方法】以等行距单作棉花(Tc1)、大小行单作棉花(Tc2)和单作芝麻(Ts)为对照,设计棉花、芝麻的间作方式分别为1-1式(棉花行距80 cm,棉花行间种植1行芝麻),2-1式(棉花大小行种植,宽行中间种植1行芝麻),2-2式(棉花大小行种植,宽行中间种植2 行芝麻)3种间作模式,比较研究了不同间作模式对棉花/芝麻产量及产量构成因子、叶面积动态和干物质积累的影响,并采用土地当量比(LER)分析了不同间作模式的土地利用效率及间作优劣势。【结果】与单作棉花或单作芝麻相比,所有间作模式皆降低棉花或芝麻的产量,但2-1式间作中棉花籽棉产量与单作棉花Tc1、Tc2相比仅略降低,差异不明显;1-1式间作模式下2年平均籽棉产量、株高、单株成铃数和铃重比Tc1 分别降低了17.3%、7.9%、19.7%和7.9%;2-2式间作的籽棉产量、株高、单株成铃数和铃重比Tc2 分别降低16.4%、5.81%、14.8% 和6.2%。间作系统中棉花与芝麻的混合产量和综合经济效益皆高于棉花和芝麻单作。与单作相比,间作显著提高了群体的叶面积指数,增加了单位面积干物质积累总量。2015年、2016 年的LER分别为1~1.24和0.91~1.16。【结论】棉花/芝麻间作的LER大于1,间作的混合产量和综合经济效益高于棉花和芝麻单作,两者具有间作优势。2-1式间作既不影响棉花产量又增收一茬芝麻,且易于栽培管理,是可行的栽培模式。
宫慧慧,张玉娟,赵军胜,李振怀,卢合全,徐士振,赵逢涛,孟庆华,董合忠. 棉花/芝麻间作模式对作物生长和产量的影响[J]. 棉花学报, 2019, 31(2): 147-155.
Gong Huihui,Zhang Yujuan,Zhao Junsheng,Li Zhenhuai,Lu Hequan,Xu Shizhen,Zhao Fengtao,Meng Qinghua,Dong Hezhong. Effects of Cotton/Sesame Intercropping Patterns on Crop Growth and Yield[J]. Cotton Science, 2019, 31(2): 147-155.
表1
不同间作模式对棉花/芝麻产量及产量构成因子的影响(2015—2016)"
年份 Year | 处理 Treatment | 籽棉产量 Seed cotton yield/(kg·hm-2) | 芝麻产量 Sesame yield/(kg·hm-2) | 棉花农艺性状 Agronomic traits of cotton | |||
株高 Plant height/cm | 单株成铃数 Boll number per plant | 铃重 Boll weight/g | 单株果枝数 Number of fruit branches | ||||
2015 | Tc1 | 4 002.39 a | 110.2 a | 20.0 ab | 4.38 a | 13.8 a | |
Ts | 1 124.78 a | ||||||
1-1 | 3 378.73 b | 453.50 b | 97.1 c | 15.4 d | 4.04 b | 11.7 b | |
Tc2 | 3 879.65 a | 105.8 b | 20.1 a | 4.31 a | 14.2 a | ||
2-1 | 3 864.03 a | 141.12 c | 107.3 ab | 19.4 b | 4.35 a | 13.8 a | |
2-2 | 3 429.51 b | 134.31 c | 99.1 c | 16.2 c | 4.07 b | 11.9 b | |
2016 | Tc1 | 4 557.52 a | 108.0 a | 20.8 a | 4.36 a | 14.4 ab | |
Ts | 1 159.53 a | ||||||
1-1 | 3 692.74 b | 401.07 b | 103.8 b | 17.4 b | 4.01 b | 13.8 b | |
Tc2 | 4 626.05 a | 109.7 a | 19.7 a | 4.39 a | 15.0 a | ||
2-1 | 4 488.99 a | 142.00 c | 108.6 a | 20.3 a | 4.37 a | 14.7 ab | |
2-2 | 3 641.96 b | 134.15 c | 103.9 b | 17.7 b | 4.09 b | 13.6 b |
表2
不同间作方式对棉花/芝麻群体叶面积指数的影响"
处理 Treatment | 现蕾期 Budding stage | 初花期 Early flowering stage | 盛花期 Flourishing flowering stage | 终花期 Final flowering stage |
Tc1 | 1.71 cd | 2.52 e | 4.18 a | 4.51 a |
Ts | 3.23 a | 3.60 cd | 1.41 d | 0.88 d |
1-1 | 3.08 b | 4.08 b | 3.27 c | 3.06 c |
Tc2 | 1.58 d | 3.23 d | 3.78 ab | 4.36 ab |
2-1 | 1.99 c | 3.92 bc | 3.82 a | 4.58 a |
2-2 | 2.96 b | 4.48 a | 3.46 bc | 4.12 b |
表3
2015—2016年不同间作模式棉花/芝麻干物质的积累量"
处理 Treatment | 现蕾期 Budding stage | 初花期 Early flowering stage | 盛花期 Flourishing flowering stage | 终花期 Final flowering stage | |||||||||||
C/g | S/g | T/(g·m-2) | C/g | S/g | T/(g·m-2) | C/g | S/g | T/(g·m-2) | C/g | S/g | T/(g·m-2) | ||||
Tc1 | 12.5 a | 65.6 d | 25.3 a | 132.8 d | 31.6 a | 165.9 c | 48.5 a | 254.6 c | |||||||
Ts | 13.8 a | 172.5 a | 17.8 a | 222.5 a | 24.8 a | 310.3 a | 37.3 a | 466.3 a | |||||||
1-1 | 10.5 c | 12.8 b | 135.1 b | 21.1 c | 13.5 c | 195.2 b | 26.7 b | 19.1 b | 259.6 b | 36.9 b | 25.6 c | 353.7 b | |||
Tc2 | 12.7 a | 66.7 d | 24.8 a | 130.2 d | 32.2 a | 169.1 c | 49.8 a | 261.5 c | |||||||
2-1 | 12.0 a | 13.4 a | 104.9 c | 25.0 a | 15.4 b | 179.4 c | 31.3 a | 24.2 a | 240.1 b | 46.8 a | 31.7 b | 344.8 b | |||
2-2 | 11.2 b | 12.2 b | 135.1 b | 22.8 b | 13.9 c | 206.6 ab | 27.2 b | 19.1 b | 262.2 b | 38.4 b | 25.6 c | 361.6 b |
表4
不同间作模式土地当量比和经济效益比较"
年份 Year | 处理 Treatment | 籽棉产量 Seed cotton yield/(kg·hm-2) | 棉花的相对 土地当量比 Cotton yield LER value | 芝麻产量 Sesame yield/(kg·hm-2) | 芝麻的相对土地当量比 Sesame yield LER value | 土地当量比 Land equivalent ratio(LER) | 经济产出 Economic returns/(yuan·hm-2) |
2015 | Tc1 | 4 002.39 a | 1.00 | 1.00 | 24 014 | ||
Ts | 1 124.78 a | 1.00 | 1.00 | 13 497 | |||
1-1 | 3 378.73 b | 0.84 | 453.50 b | 0.40 | 1.24 | 25 714 | |
Tc2 | 3 879.65 a | 1.00 | 1.00 | 23 278 | |||
2-1 | 3 864.03 a | 1.00 | 141.12 c | 0.13 | 1.13 | 24 878 | |
2-2 | 3 429.51 b | 0.88 | 134.31 c | 0.12 | 1.00 | 22 189 | |
2016 | Tc1 | 4 557.52 a | 1.00 | 1.00 | 27 345 | ||
Ts | 1 159.53 a | 1.00 | 1.00 | 13 914 | |||
1-1 | 3 692.74 b | 0.81 | 401.07 b | 0.35 | 1.16 | 26 969 | |
Tc2 | 4 626.05 a | 1.00 | 1.00 | 27 756 | |||
2-1 | 4 488.99 a | 0.97 | 142.00 c | 0.12 | 1.09 | 28 638 | |
2-2 | 3 641.96 b | 0.79 | 134.15 c | 0.12 | 0.91 | 23 462 |
[1] | 党小燕, 刘建国, 帕尼古丽, 等. 棉花间作模式中作物养分竞争吸收和积累动态的研究[J]. 植物营养与肥料学报, 2013, 19(1):166-173. |
Dang Xiaoyan, Liu Jianguo, Pani Guli, et al. Effects of intercropping time and planting density on nitrogen use efficiency of melon-sunflower intercropping system[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(1): 166-173. | |
[2] | 王延琴, 杨伟华, 许红霞, 等. 我国棉花生产成本与收益调查及分析[J]. 农学学报, 2010, 37(12): 20-22. |
Wang Yanqin, Yang Weihua, Xu Hongxia, et al. Investigation and analysis of cotton production cost and income in China[J]. Journal of Agriculture, 2010, 37(12): 20-22. | |
[3] |
Jurik T W, Van K. Microenvironment of a corn-soybean-oat strip intercrop system[J]. Field Crops Research, 2004, 90(2/3): 335-349. https://doi.org/10.1016/j.fcr.2004.04.002
doi: https://doi.org/10.1016/j.fcr.2004.04.002 |
[4] |
Zhang Lizhen, Werf W V D, Zhang Siping, et al. Growth, yield and quality of wheat and cotton in relay strip intercropping systems[J]. Field Crops Research, 2007, 103(3): 178-188. https://doi.org/10.1016/j.fcr.2007.06.002
doi: https://doi.org/10.1016/j.fcr.2007.06.002 |
[5] |
Zhang Fusuo, Li Long. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient use efficiency[J]. Plant and Soil, 2003, 248(1/2): 305-312. https://doi.org/10.1023/A:1022352229863
doi: https://doi.org/10.1023/A:1022352229863 |
[6] |
Ogindo H O, Walker S. Comparison of measured changes in seasonal soil water content by rainfed maize-bean intercrop and component cropping systems in a semi-arid region of southern Africa[J]. Physics and Chemistry of the Earth Parts A/b/c, 2005, 30(11/12/13/14/15/16): 799-808. https://doi.org/10.1016/j.pce.2005.08.023
doi: https://doi.org/10.1016/j.pce.2005.08.023 |
[7] |
Mao Lili, Zhang Lizhen, Li Weiqi, et al. Yield advantage and water saving in maize/pea intercrop[J]. Field Crops Research, 2012, 138(3): 11-20. https://doi.org/10.1016/j.fcr.2012.09.019
doi: https://doi.org/10.1016/j.fcr.2012.09.019 |
[8] |
Harris D, Natarajan M, Willey R W. Physiological basis for yield advantage in a sorghum/groundnut intercrop exposed to drought.1.Dry matter production, yield, and light interception[J]. Field Crops Research, 1987, 17(3/4): 259-272. https://doi.org/10.1016/0378-4290(87)90039-6
doi: https://doi.org/10.1016/0378-4290(87)90039-6 |
[9] |
杨峰, 娄莹, 廖敦平, 等. 玉米-大豆带状套作行距配置对作物生物量、根系形态及产量的影响[J]. 作物学报, 2015, 41(4): 642-650.
doi: 10.3724/SP.J.1006.2015.00642 |
Yang Feng, Lou Ying, Liao Dunping, et al. Effects of row spacing on crop biomass, root morphology and yield in maize- soybean relay strip intercropping system[J]. Acta Agronomica Sinica, 2015, 41(4): 642-650.
doi: 10.3724/SP.J.1006.2015.00642 |
|
[10] |
焦念元, 杨萌珂, 宁堂原, 等. 玉米花生间作和磷肥对间作花生光合特性及产量的影响[J]. 植物生态学报, 2013, 37(11): 1010-1017.
doi: 10.3724/SP.J.1258.2013.00104 |
Jiao Nianyuan, Yang Mengke, Ning Tangyuan, et al. Effects of maize-peanut intercropping and phosphate fertilizer on photosynthetic characteristics and yield of intercropped peanut plants[J]. Chinese Journal of Plant Ecology, 2013, 37(11): 1010-1017.
doi: 10.3724/SP.J.1258.2013.00104 |
|
[11] |
焦念元, 宁堂原, 赵春, 等. 施氮量和玉米-花生间作模式对氮磷吸收与利用的影响[J]. 作物学报, 2008, 34(4): 706-712.
doi: 10.3724/SP.J.1006.2008.00706 |
Jiao Nianyuan, Ning Tangyuan, Zhao Chun, et al. Effect of nitrogen application and planting pattern on N and P absorption and use in maize-peanut intercropping system[J]. Acta Agronomica Sinica, 2008, 34(4): 706-712.
doi: 10.3724/SP.J.1006.2008.00706 |
|
[12] |
Li Long, Zhang Fusuo, Li Xiaolin, et al. Interspecific facilitation of nutrient uptake by intercropped maize and fababean[J]. Nutrient Cycling in Agroecosystems, 2003, 65(1): 61-71. https://doi.org/10.1023/A:1021885032241
doi: https://doi.org/10.1023/A:1021885032241 |
[13] |
李玉英, 孙建好, 李春杰, 等. 施氮对蚕豆/玉米间作系统蚕豆农艺性状及结瘤特性的影响[J]. 中国农业科学, 2009, 42(10): 3467-3474. https://doi.org/10.3864/j.issn.0578-1752.2009.10.0011
doi: https://doi.org/10.3864/j.issn.0578-1752.2009.10.0011 |
Li Yuying, Sun Jianhao, Li Chunjie, et al. Effects of interspecific interactions and nitrogen fertilization rates on the agronomic and nodulation characteristics of intercropped faba bean[J]. Scientia Agricultura Sinica, 2009, 42(10): 3467-3474.
doi: https://doi.org/10.3864/j.issn.0578-1752.2009.10.0011 |
|
[14] |
Machan M K, Stuelpnagel R. Biomass yield and nitrogen fixation of legumes monocropped and intercropped with rye and rotation effects on a subsequent maize crop[J]. Plant and Soil, 2000, 218(1/2): 215-232. https://doi.org/10.1023/A:1014932004926
doi: https://doi.org/10.1023/A:1014932004926 |
[15] |
赵平, 郑毅, 汤利, 等. 小麦蚕豆间作施氮对小麦氮素吸收、累积的影响[J]. 中国生态农业学报, 2010, 18(4): 742-747.
doi: 10.3724/SP.J.1011.2010.00742 |
Zhao Ping, Zheng Yi, Tang Li, et al. Effect of N supply and wheat/faba bean intercropping on N uptake and accumulation of wheat[J]. Chinese Journal of Eco-Agriculture, 2010, 18(4): 742-747.
doi: 10.3724/SP.J.1011.2010.00742 |
|
[16] |
Singh R J, Ahlawat I P S. Effects of transgenic cotton-based cropping systems and their fertility levels on succeed-ing wheat crop[J]. Communications in Soil Science and Plant Analysis, 2014, 45(18): 2385-2396. https://doi.org/10.1080/00103624.2014.912291
doi: https://doi.org/10.1080/00103624.2014.912291 |
[17] |
Lu Hequan, Dai Jianlong, Li Weijiang, et al. Yield and economic benefits of late planted short-season cotton versus full-season cotton relayed with garlic[J]. Field Crops Research, 2017, 200: 80-87. https://doi.org/10.1016/j.for.2016.10.006
doi: https://doi.org/10.1016/j.for.2016.10.006 |
[18] |
Mao Lili, Zhang Lizhen, Zhao Xinhua, et al. Crop growth, light utilization and yield of relay intercropped cotton as affected by plant density and a plant growth regulator[J]. Field Crops Research, 2014, 155: 67-76. https://doi.org/10.1016/j.fcr.2013.09.021
doi: https://doi.org/10.1016/j.fcr.2013.09.021 |
[19] |
Zhang Lizhen, Werf W V D, Bastiaans L, et al. Light interception and utilization in relay intercrops of wheat and cotton[J]. Field Crops Research, 2008, 107(1): 29-42. https://doi.org/10.1016/j.fcr.2007.12.014
doi: https://doi.org/10.1016/j.fcr.2007.12.014 |
[20] | Raman J, Singh A I P S. Productivity, competition indices and soil fertility changes of Bt cotton (Gossypium hirsutum)-groundnut (Arachis hypogaea) intercropping system using different fertility levels[J]. Indian Journal of Agricultural Sciences, 2011, 81(7): 606-611. |
[21] | 党小燕, 刘建国, 李隆, 等. 不同作物与棉花间作对棉纤维品质的影响[J]. 中国棉花, 2011, 38(12): 18-20. |
Dang Xiaoyan, Liu Jianguo, Li Long, et al. Cotton fiber quality in cotton-based intercropping systems[J]. China cotton, 2011, 38(12): 18-20. | |
[22] |
朱文旭, 张会慧, 许楠, 等. 间作对桑树和谷子生长和光合日变化的影响[J]. 应用生态学报, 2012, 23(7): 1817-1824.
pmid: 23173454 |
Zhu Wenxu, Zhang Huihui, Xu Nan, et al. Effects of Morus alba and Setaria italica intercropping on their plant growth and diurnal variation of photosynthesis[J]. Chinese Journal of Applied Ecology, 2012, 23(7): 1817-1824.
pmid: 23173454 |
|
[23] |
赵建华, 孙建好, 李隆, 等. 改变玉米行距种植对豌豆/玉米间作体系产量的影响[J]. 中国生态农业学报, 2012, 20(11): 1451-1456.
doi: 10.3724/SP.J.1011.2012.01451 |
Zhao Jiaohua, Sun Jianhao, Li Long, et al. Effect of maize row spacing on yield of pea/maize intercropping system[J]. Chinese Journal of Eco-Agriculture, 2012, 20(11): 1451-1456.
doi: 10.3724/SP.J.1011.2012.01451 |
|
[24] | 李隆, 李晓林, 张福锁, 等. 小麦大豆间作条件下作物养分吸收利用对间作优势的贡献[J]. 植物营养与肥料学报, 2000, 6(2): 140-146. |
Li Long, Li Xiaolin, Zhang Fusuo. The contribution of crop nutrient absorption to intercropping advantage in wheat-soybean intercropping[J]. Plant Nutrition and and Fertilizer Science, 2000, 6(2): 140-146. | |
[25] |
Keating B A, Carberry P S. Resource capture and use in intercropping: solar radiation[J]. Field Crops Research, 1993, 34(3/4): 273-301. https://doi.org/10.1016/0378-4290(93)90118-7
doi: https://doi.org/10.1016/0378-4290(93)90118-7 |
[26] |
Heitholt J J, Pettigrew W T, Meredith W R. Light interception and lint yield of narrow-row cotton[J]. Crop Science, 1992, 32(3): 728-733.
doi: 10.2135/cropsci1992.0011183X003200030030x |
[27] | 刘斌, 谢飞, 凌一波, 等. 不同间作播期和密度对甜瓜/向日葵间作系统氮素利用效率的影响[J]. 中国生态农业学报, 2016, 24(1): 36-46. |
Liu Bin, Xie Fei, Ling Yibo, et al. Effects of intercropping time and planting density on nitrogen use efficiency of melon-sunflower intercropping system[J]. Chinese Journal of Eco-Agriculture, 2016, 24(1): 36-46. | |
[28] |
Zhang Yanjun, Chen Yizhen, Lu Hequan, et al. Growth, lint yield and changes in physiological attributes of cotton under temporal waterlogging[J]. Field Crops Research, 2016, 194: 83-93. https://doi.org/10.1016/j.fcr.2016.05.006
doi: https://doi.org/10.1016/j.fcr.2016.05.006 |
[29] |
Dong Hezhong, Li Weijiang, Tang Wei, et al. Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China[J]. Field Crops Research, 2006, 98(2): 106-115. https://doi.org/10.1016/j.fcr.2005.12.008
doi: https://doi.org/10.1016/j.fcr.2005.12.008 |
[30] |
徐瑞博, 孙红春, 刘连涛, 等. 灌溉模式对冀南植棉区棉花干物质积累分配、产量和水分利用效率的影响[J]. 棉花学报, 2018, 30(5): 386-394. https://doi.org/10.11963/1002-7807.xrblcd.20180929
doi: https://doi.org/10.11963/1002-7807.xrblcd.20180929 |
Xu Ruibo, Sun Hongchun, Liu Liantao, et al. Effect of irrigation patterns on accumulation and distribution of dry matter, yield and water use efficiency of cotton in southern Hebei[J]. Cotton Science, 2018, 30(5): 386-394.
doi: https://doi.org/10.11963/1002-7807.xrblcd.20180929 |
|
[31] |
冯晓敏, 杨永, 任长忠, 等. 豆科-燕麦间作对作物光合特性及籽粒产量的影响[J]. 作物学报, 2015, 41(9): 1426-1434.
doi: 10.3724/SP.J.1006.2015.01426 |
Feng Xiaomin, Yang Yong, Ren Changzhong, et al. Effects of legumes intercropping with oat on photosynthesis characteristics of and grain yield[J]. Acta Agronomica Sinica, 2015, 41(9): 1426-1434.
doi: 10.3724/SP.J.1006.2015.01426 |
|
[32] |
卢合全, 李振怀, 董合忠, 等. 黄河流域棉区高密度垄作对棉花的增产效应[J]. 中国农业科学, 2013, 46(19): 4018-4026. https://doi.drg/10.3864/j.issn.0578-1752.2013.19.007
doi: https://doi.drg/10.3864/j.issn.0578-1752.2013.19.007 |
Lu Hequan, Li Zhenhuai, Dong Hezhong, et al. Effects of raised-bed planting and high plant density on yield-increasing of cotton in the Yellow River Basin[J]. Scientia Agricultura Sinica, 2013, 46(19): 4018-4026.
doi: https://doi.drg/10.3864/j.issn.0578-1752.2013.19.007 |
|
[33] |
李建峰, 王聪, 梁福斌, 等. 新疆机采模式下棉花株行距配置对冠层结构指标及产量的影响[J]. 棉花学报, 2017, 29(2): 157-165. https://doi.org/10.11963/issn.1002-7807.201702005
doi: https://doi.org/10.11963/issn.1002-7807.201702005 |
Li Jianfeng, Wang Cong, Liang Fubin, et al. Row spacing and planting density affect canopy structure and yield in machine-picked cotton in Xinjiang[J]. Cotton Science, 2017, 29(2): 157-165.
doi: https://doi.org/10.11963/issn.1002-7807.201702005 |
|
[34] | 张晓艳, 杜吉到, 郑殿峰, 等. 密度对大豆群体叶面积指数及干物质积累分配的影响[J]. 大豆科学, 2011, 30(1): 96-100. |
Zhang Xiaoyan, Du Jidao, Zheng Dianfeng, et al. Effect of density on leaf areaindex, dry matter accumulation and distribution in soybean population[J]. Soybean Science, 2011, 30(1): 96-100. | |
[35] | 刘玉平, 李志刚, 李瑞平. 不同密度与施氮水平对高油大豆产量及品质的影响[J]. 大豆科学, 2011, 30(1): 79-82. |
Liu Yuping, Li Zhigang, Li Ruiping. Effects of different planting densities and N-fertilizer levels on yield and quality of soybean[J]. Soybean Science, 2011, 30(1): 79-82. | |
[36] |
刘朋程, 孙红春, 刘连涛, 等. 限量灌溉对不同棉花品种干物质积累分配、产量和水分利用效率的影响[J]. 棉花学报, 2018, 30(4): 316-325. https://doi.org/10.11963/1002-7807.lpclcd.20180503
doi: https://doi.org/10.11963/1002-7807.lpclcd.20180503 |
Liu Pengcheng, Sun Hongchun, Liu Liantao, et al. Effects of limited irrigation on accumulation and distribution of dry matter, yield, and water use efficiency of different cotton varieties[J]. Cotton Science, 2018, 30(4): 316-325.
doi: https://doi.org/10.11963/1002-7807.lpclcd.20180503 |
|
[37] |
Li Long, Yang Sicun, Li Xiaolin, et al. Interspecific complementary and competitive interactions between intercropped maize and fababean[J]. Plant and Soil, 1999, 212(2): 105-114.
doi: 10.1023/A:1004656205144 |
[38] |
Worku W, Demisie W. Growth, Light interception and radiation use efficiency response of pigeon pea (Cajanus cajan) to planting density in Southern Ethiopia[J]. Journal of Agronomy, 2012, https://doi.org/10.3923/ja.2012.85.93
doi: https://doi.org/10.3923/ja.2012.85.93 |
[1] | 李鸣凤,彭文勇,何华,刘新伟,赵竹青. 外施不同形态硼对棉花吸收利用硼及其他矿质元素的影响[J]. 棉花学报, 2021, 33(5): 385-392. |
[2] | 段佳宏,李楠楠,王军,李军宏,郝先哲,罗宏海,杨国正. 滴灌带埋设深度对无膜棉产量形成的影响[J]. 棉花学报, 2021, 33(5): 404-411. |
[3] | 王燕,张谦,王树林,韩硕,冯国艺,董明,钱玉源,祁虹. 耕层重构对棉田土壤养分、微生物数量与酶活性的影响[J]. 棉花学报, 2021, 33(5): 422-434. |
[4] | 杨长琴,张国伟,王晓婧,刘瑞显,倪万潮. 不同种植模式棉花产量、种植效益与氮素利用率比较分析[J]. 棉花学报, 2021, 33(4): 307-318. |
[5] | 张岚,程琦,梁士辰,邓雨潇,潘玉欣. 棉花UGPase基因鉴定与生物信息学分析[J]. 棉花学报, 2021, 33(4): 337-346. |
[6] | 马怡茹,吕新,祁亚琴,张泽,易翔,陈翔宇,鄢天荥,侯彤瑜. 基于无人机数码图像的机采棉脱叶率监测模型构建[J]. 棉花学报, 2021, 33(4): 347-359. |
[7] | 苟浩琦,马常凯,张迁,范术丽,马启峰,张朝军. 棉花光敏雄性不育系psm5的培育及其育性转变规律[J]. 棉花学报, 2021, 33(4): 360-367. |
[8] | 王林,张强,马江锋,朱玉永,田英,李红,毕显杰,宋敏,王海标,雷天翔,李召虎,田晓莉,杜明伟,张立祯,赵冰梅. 新疆棉区植保无人机喷施棉花脱叶催熟剂效果研究[J]. 棉花学报, 2021, 33(3): 200-208. |
[9] | 王金刚,姜艳,田甜,朱永琪,杨振康,周天航,张文旭,佟炫梦,孙嘉祺,王海江. 减氮配施生物刺激素对棉花产量及氮肥吸收利用的影响[J]. 棉花学报, 2021, 33(3): 209-223. |
[10] | 易翔,张立福,吕新,张泽,田敏,印彩霞,马怡茹,范向龙. 基于无人机高光谱融合连续投影算法估算棉花地上部生物量[J]. 棉花学报, 2021, 33(3): 224-234. |
[11] | 孙璘,海艳,唐晓雪,祖丽皮亚·艾买,焦瑞莲,任毓忠,李国英. 新疆棉花茎腐病的病原鉴定及其生物学特性研究[J]. 棉花学报, 2021, 33(3): 235-246. |
[12] | 党文芳,刘萍,管力慧,杨红梅,牛新湘,李萍,楚敏,娄恺,史应武. 土壤环境因子对棉花根际与内生拮抗细菌存活数量的影响[J]. 棉花学报, 2021, 33(3): 247-257. |
[13] | 杨可心,陈秀叶,刘畅,鹿秀云,郭庆港,马平. 棉花枯萎病菌新生理型菌株毒素鉴定及其活性测定[J]. 棉花学报, 2021, 33(3): 258-268. |
[14] | 安杰,韩迎春,张正贵,冯璐,雷亚平,杨北方,王国平,李小飞,王占彪,邢芳芳,熊世武,辛明华,李亚兵. 不同熟性棉花品种冠层温度分布特点[J]. 棉花学报, 2021, 33(2): 134-143. |
[15] | 孟浩峰,雷长英,张旺锋,张亚黎. 系统调控下棉花比叶重的变化机制[J]. 棉花学报, 2021, 33(2): 144-154. |
|