模态框(Modal)标题

在这里添加一些文本

模态框(Modal)标题

  • Home
  • About
    • About Journal
    • Editor-in-Chief
    • Editorial Board
    • Awards and Honors
    • Indexed In
    • Impact Factor
  • Instruction
    • Instruction for Authors
    • Fees
    • Online Submission
  • Journal Online
    • Just Accepted
    • Current Issue
    • Archive
    • Most Read
    • Most Download
    • Most Cited
    • E-mail Alert
    • RSS
  • Specification
    • Paper Structure/Writing
    • Word Standardization
    • Unit of Measurement
    • Punctuation
    • Typographic Format/Template
    • Reference Format
  • Subscription
  • Advertising Service
    • Advertising Notice
    • Advertising Fee
  • Contact Us
  • 中文
  • China Cotton

Figure/Table detail

Estimation of chlorophyll content in cotton canopy using UAV multispectral imagery and machine learning algorithms
Zhao Xin, Li Zhaoyang, Wang Hongbo, Liu Jiangfan, Jiang Wenge, Zhao Zeyi, Wang Xingpeng, Gao Yang
Cotton Science, 2024, 36(1): 1-13.   DOI: 10.11963/cs20230026

模型Model 建模集
Modelling dataset
验证集
Validation dataset
R2 RMSE/(mg·L-1) RPD R2 RMSE/(mg·L-1) RPD
LASSO 0.563 1.252 1.513 0.436 1.677 1.331
RR 0.571 1.166 1.526 0.434 1.838 1.330
PLSR 0.363 1.391 1.253 0.687 1.364 1.786
KNNR 0.609 1.170 1.600 0.722 1.176 1.899
RFR 0.856 0.709 2.634 0.742 1.158 1.969
SVR 0.511 2.634 1.430 0.697 1.236 1.816
Table 6 Estimation results of machine learning regression
Other figure/table from this article
  • Fig. 1 Overview map of the experimental area
  • Table 1 Basic soil nutrient content of experimental field
  • Table 2 Multispectral camera sensor parameters
  • Table 3 Calculation formula for vegetation index
  • Table 4 Statistical description of chlorophyll content in cotton canopy leaves
  • Fig. 2 The correlation coefficient between vegetation index and chlorophyll content
  • Table 5 Simple linear model of vegetation index and SPAD and the model validation
  • Fig. 3 Distribution of measured cholorophyll content and the predicted chlorophyll content value from machine learning regression model A-F are methods based on LASSO regression, RR, PLSR, KNNR, RFR, and SVR, respectively.
  • Fig. 4 Inversion mapping of cotton canopy chlorophyll content using the RFR model
ISSN 1002-7807 CN 41-1163/S
Superintendent: China Association for Science and Technology
Sponsored by: China Association of Agricultural Science Societies
Organized by: Institute of Cotton Research of CAAS
Copyright © Cotton Science, All Rights Reserved.
Tel: (0372)2525361/362/369 
Fax: (0372)2525361 
E-mail: journal@caas.cn
Visited
Total visitors:
Visitors of today:
Now online:
Powered by Beijing Magtech Co., Ltd.