农作物秸秆热解制油技术现状及影响因素分析

张韶珂, 师勇强, 马小艳, 张杰, 王文魁, 杨敬贺, 程思贤, 王岩, 马雄风

PDF(751 KB)
PDF(751 KB)
中国棉花 ›› 2022, Vol. 49 ›› Issue (12) : 42-49. DOI: 10.11963/cc20220183
棉副利用

农作物秸秆热解制油技术现状及影响因素分析

  • 张韶珂1#,师勇强2#,马小艳1,2,张杰1,王文魁2,杨敬贺1,程思贤2,王岩1*,马雄风1,2*
作者信息 +

Technical status and influencing factors of pyrolysis oil production using crop straw

  • Zhang Shaoke#, Shi Yongqiang#, Ma Xiaoyan, Zhang Jie, Wang Wenkui, Yang Jinghe, Cheng Sixian, Wang Yan*, Ma Xiongfeng*
Author information +
History +

摘要

新疆是我国棉花种植面积最大的地区,随之产生的秸秆废弃物处置问题,成为新疆棉花生产面临的巨大经济问题。生物质的热解是生物质开发利用最有前景的产业,其产物生物油具有易储存、污染小且易运输等优点。因此,将棉秆作为生物质热解的原材料,可为棉秆处置问题提供新思路。对目前农作物秸秆热解的方法进行综述;针对热解过程中的影响因素及其对生物油生产的影响机理进行归纳分析,并对秸秆热解的主要研究方向进行总结和展望,以期为新疆棉秆及其他秸秆废弃物的相关研究提供参考。

关键词

生物油 / 棉秆 / 热解 / 生物质利用 / 影响因素

引用本文

导出引用
张韶珂, 师勇强, 马小艳, 张杰, 王文魁, 杨敬贺, 程思贤, 王岩, 马雄风. 农作物秸秆热解制油技术现状及影响因素分析[J]. 中国棉花, 2022, 49(12): 42-49. https://doi.org/10.11963/cc20220183
Zhang Shaoke, Shi Yongqiang, Ma Xiaoyan, Zhang Jie, Wang Wenkui, Yang Jinghe, Cheng Sixian, Wang Yan, Ma Xiongfeng​. Technical status and influencing factors of pyrolysis oil production using crop straw[J]. China Cotton, 2022, 49(12): 42-49. https://doi.org/10.11963/cc20220183

参考文献

[1] Tian Y,Wang F,Djandja J O,et al. Hydrothermal liquefaction of crop straws: effect of feedstock composition[J/OL]. Fuel,2020,265:116946 [2022-10-01]. https://doi.org/10.1016/j.fuel.2019.116946.
[2] 刘嘉嘉,黄福江. 新疆棉花生产现状和存在问题及对策[J]. 棉花科学,2022,44(5):15-19.
[3] 李勇,张琴. 新疆棉秆生产燃料乙醇的现状及对策[J]. 中国棉花加工,2012(1):32-34.
[4] Khan S R,Zeeshan M,Ahmed A,et al. Comparison of synthetic and low-cost natural zeolite for bio-oil focused pyrolysis of raw and pretreated biomass[J/OL]. Journal of Cleaner Production,2021,313:127760[2022-10-01]. https://doi.org/10.1016/j.jclepro.2021.127760.
[5] Harisankar S,Vishnu M R,Choudhary V,et al. Effect of water quality on the yield and quality of the products from hydrothermal liquefaction and carbonization of rice straw[J/OL]. Bioresource Technology,2022,351:127031[2022-10-01]. https://doi.org/10.1016/j.biortech.2022.127031.
[6] Zhang Z Q,Fang Y,Yang J H,et al. A comprehensive review of bio-oil, bio-binder and bio-asphalt materials: their source, composition, preparation and performance[J]. Journal of Traffic and Transportation Engineering(English Edition),2022,9(2):151-166.
[7] Suresh A,Alagusundaram A,Kumar P S,et al. Microwave pyrolysis of coal, biomass and plastic waste: a review[J]. Environmental Chemistry Letters,2021,19(5):3609-3629.
[8] Park J,Lee Y,Ryu C,et al. Slow pyrolysis of rice straw: analysis of products properties, carbon and energy yields[J]. Bioresource Technology,2014,155:63-70.
[9] Collard F,Blin J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin[J]. Renewable and Sustainable Energy Reviews,2014,38:594-608.
[10] Mukhambet Y,Shah D,Tatkeyeva G,et al. Slow pyrolysis of flax straw biomass produced in Kazakhstan: characterization of enhanced tar and high-quality biochar [J/OL]. Fuel,2022,324:124676[2022-10-01]. https://doi.org/10.1016/j.fuel.2022.124676.
[11] 叱蕊鸽. 基于有效能分析的麦秆制油过程及换热网络优化[D]. 大连:大连理工大学,2016.
[12] Mohamed B A,Bilal M,Salama E,et al. Phenolic-rich bio-oil production by microwave catalytic pyrolysis of switchgrass: experimental study, life cycle assessment,and economic analysis[J/OL]. Journal of Cleaner Production,2022,366:132668(2022-06-17)[2022-10-01]. https://doi.org/10.1016/j.jclepro.2022.132668.
[13] 赵希强,宋占龙,刘洪贞,等. 农作物秸秆微波热解特性试验[J]. 农业工程学报,2009,25(10):210-214.
[14] Aparamarta H W,Gunawan S,Ihsanpuro S I,et al. Optimization and kinetic study of biodiesel production from nyamplung oil with microwave-assisted extraction (MAE) technique[J/OL]. Heliyon,2022,8(8):e10254[2022-10-01].)https://doi.org/10.1016/j.heliyon.2022.e10254.
[15])Budarin V L,Clark J H,Lanigan B A,et al. The preparation of high-grade bio-oils through the controlled, low temperature microwave activation of wheat straw[J]. Bioresource Technology,2009,100(23):6064-6068.
[16] Zhang Y N,Fan S C,Liu T,et al. Perspectives into intensification for aviation oil production from microwave pyrolysis of organic wastes[J/OL]. Chemical Engineering and Processing-Process Intensification,2022,176:108939[2022-10-01]. https://doi.org/10.1016/j.cep.2022.108939.
[17] Su G C,Ong H C,Cheah M Y,et al. Microwave-assisted pyrolysis technology for bioenergy recovery: mechanism, performance, and prospect[J/OL]. Fuel,2022,326:124983[2022-10-01]. https://doi.org/10.1016/j.fuel.2022.124983.
[18] Bhatnagar A,Singhal A,Tolvanen H,et al. Effect of pretreatment and biomass blending on bio-oil and biochar quality from two-step slow pyrolysis of rice straw[J]. Waste Management,2022,138:298-307.
[19] Zhang S L,Wang F,Zhao F T,et al. Liquid fuel production via catalytic hydropyrolysis and cohydropyrolysis of agricultural residues and used engine oil[J/OL]. Journal of Analytical and Applied Pyrolysis,2021,154:104988[2022-10-01]. https://doi.org/10.1016/j.jaap.2020.104988.
[20] Dos Passos J S,Matayeva A,Biller P. Synergies during hydrothermal liquefaction of cow manure and wheat straw[J/OL]. Journal of Environmental Chemical Engineering,2022,10(5):108181[2022-10-01]. https://doi.org/10.1016/j.jece.2022.108181.
[21] Xiong M,Huang J,He X R,et al. Evaluation of bio-oil/biodiesel production from co-pyrolysis of corn straw and natural hair: a new insight towards energy recovery and waste biorefinery[J/OL]. Fuel,2023,331:125710[2022-10-01]. https://doi.org/10.1016/j.fuel.2022.125710.
[22] Delgado R,Rosas J G,Gómez N,et al. Energy valorisation of crude glycerol and corn straw by means of slow copyrolysis: production and characterisation of gas, char and bio-oil[J]. Fuel,2013,112:31-37.
[23] Cao L C,Zhang C,Hao S L,et al. Effect of glycerol as co-solvent on yields of bio-oil from rice straw through hydrothermal liquefaction [J]. Bioresource Technology,2016,220:471-478.
[24] Zhang C K,Han L,Yan M,et al . Hydrothermal coliquefaction of rice straw and waste cooking-oil model compound for bio-crude production [J/OL]. Journal of Analytical and Applied Pyrolysis,2021,160:105360[2022-10-01]. https://doi.org/10.1016/j.jaap.2021.105360.
[25] Zhang X K,Yu Z S,Lu X L,et al. Catalytic co-pyrolysis of microwave pretreated chili straw and polypropylene to produce hydrocarbons-rich bio-oil [J/OL]. Bioresource Technology,2021,31 :124191 [2022-10-01]. https://doi.org/10.1016/j.biortech.2020.124191.
[26] Xu J,Niu C Y,Zhang D Y,et al. Co-pyrolysis of rice straw and water hyacinth: characterization of products, yields and biomass interaction effect[J/OL]. Biomass and Bioenergy,2019,127:105281[2022-10-01]. https://doi.org/10.1016/j.biombioe.2019.105281.
[27] Leng L J,Li J,Yuan X Z,et al. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass[J]. Bioresource Technology,2018,251:49-56.
[28] Chen B,Li Y L,Yuan M X,et al. Study of the Co-pyrolysis characteristics of oil shale with wheat straw based on the hierarchical collection[J/OL]. Energy,2022,239:122144[2022-10-01]. https://doi.org/10.1016/j.energy.2021.122144.
[29] Chen D Y,Gao D X,Huang S C,et al. Influence of acid-washed pretreatment on the pyrolysis of corn straw: a study on characteristics, kinetics and bio-oil composition[J/OL]. Journal of Analytical and Applied Pyrolysis,2021,155:105027[2022-10-01]. https://doi.org/10.1016/j.jaap.2021.105027.
[30] Verma R,Verma S K,Verma S,et al. Value-addition of wheat straw through acid treatment and pyrolysis of acid treated residues[J/OL]. Journal of Cleaner Production,2021,282:124488[2022-10-01]. https://doi.org/10.1016/j.jclepro.2020.124488.
[31] Ukaew S,Schoenborn J,Klemetsrud B,et al. Effects of torrefaction temperature and acid pretreatment on the yield and quality of fast pyrolysis bio-oil from rice straw[J]. Journal of Analytical and Applied Pyrolysis,2018,12 :112-122.
[32] Liu X Z,Yao Z L,Zhao L X,et al. Effects of torrefaction on slow pyrolysis of the sorghum straw pellets: a kinetic modeling study[J]. Journal of Thermal Analysis and Calorimetry,2022,147(1):891-904.
[33] Liang J J,Lin Y Q,Wu S B,et al. Enhancing the quality of bio-oil and selectivity of phenols compounds from pyrolysis of anaerobic digested rice straw[J]. Bioresource Technology,2015,181:220-223.
[34] Shi L,Yu S,Wang F C,et al. Pyrolytic characteristics of rice straw and its constituents catalyzed by internal alkali and alkali earth metals[J]. Fuel,2012,6:586-594.
[35] Zhang L B,Yang X,Sheng Y Q,et al.Influence of typical pretreatment on cotton stalk conversion activity and bio-oil property during low temperature (180-220 ℃) hydrothermal process[J/OL]. Fuel,2022,328 :125250[2022-10-01]. https://doi.org/10.1016/j.fuel.2022.125250.
[36] Gao X,Zhou Z,Coward B,et al. Improvement of wheat (T. aestivum) straw catalytic fast pyrolysis for valuable chemicals production by coupling pretreatment of acid washing and torrefaction[J/OL]. Industrial Crops and Products,2022,187:115475[2022-10-01]. https://doi.org/10.1016/j.indcrop.2022.115475.
[37] Zhang J L,Wang L,Ni H X,et al. Selective fungal pretreatment favored pyrolysis products of wheat straw based on pyrolytic polygeneration system[J/OL]. Fuel Processing Technology,2021,215:106749 [2022-10-01]. https://doi.org/10.1016/j.fuproc.2021.106749.
[38] 王超,陈冠益,兰维娟,等. 生物质快速热解制油试验及流程模拟[J]. 化工学报,2014,65(2):679-683.
[39] Xiao Z H,Wu Q D,Zheng X C,et al. Thermochemical liquefaction of Brassica napus straw: effect of liquefaction parameters on biocrude[J/OL]. Industrial Crops and Products,2022,188:115564 [2022-10-01]. https://doi.org/10.1016/j.indcrop.2022.115564.
[40] 王超. 生物质快速热解制油工艺分析及油品改质实验研究[D]. 天津:天津大学,2014.
[41] 张波. 基于补氢/ 脱氧的玉米秸秆催化热解制油和油品提质研究[D]. 南京:东南大学,2016.
[42] Wu L,Ma H M,Mei J S,et al. Low energy consumption and high quality bio-fuels production via in-situ fast pyrolysis of reed straw by adding metallic particles in an induction heating reactor[J]. International Journal of Hydrogen Energy,2022,47(9):5828-5841.
[43] Younas R,Hao S L,Zhang L W,et al. Hydrothermal liquefaction of rice straw with NiO nanocatalyst for bio-oil production[J]. Renewable Energy,2017,113:532-545.
[44] Chen C X,Wei D N,Zhao J,et al. Study on co-pyrolysis and products of Chlorella vulgaris and rice straw catalyzed by activated carbon/HZSM-5 additives[J/OL]. Bioresource Technology,2022,360:127594 [2022-10-01]. https://doi.org/10.1016/j.biortech.2022.127594.
[45] Zhang Y J,Lv P,Wang J F,et al. Product characteristics of rice straw pyrolysis at different temperature: role of inherent alkali and alkaline earth metals with different occurrence forms[J]. Journal of the Energy Institute,2022,101:201-208.
[46] Wang L H,Si B C,Han X,et al. Study on the effect of red mud and its component oxides on the composition of bio-oil derived from corn stover catalytic pyrolysis[J/OL]. Industrial Crops and Products,2022,184:114973[2022-10-01]. https://doi.org/10.1016/j.indcrop.2022.114973.
[47] Wang Y P,Jiang L,Dai L L,et al. Microwave-assisted catalytic co-pyrolysis of soybean straw and soapstock for bio-oil production using SiC ceramic foam catalyst[J].Journal of Analytical and Applied Pyrolysis,2018,133:76-81.
[48] Charusiri W,Vitidsant T. Upgrading bio-oil produced from the catalytic pyrolysis of sugarcane (Saccharum officinarum L.) straw using calcined dolomite[J]. Sustainable Chemistry and Pharmacy,2017,6:114-123.
[49] Jung S,Kang B,Kim J. Production of bio-oil from rice straw and bamboo sawdust under various reaction conditions in a fast pyrolysis plant equipped with a fluidized bed and a char separation system[J]. Journal of Analytical and Applied Pyrolysis,2008,82(2):240-247.
[50] Liang J H,Morgan H M,Liu Y J,et al. Enhancement of bio-oil yield and selectivity and kinetic study of catalytic pyrolysis of rice straw over transition metal modified ZSM-5 catalyst [J]. Journal of Analytical and Applied Pyrolysis,2017,128:324-334.
[51] Lazdovica K,Kampars V,Grabis J. Effect of zinc-containing nanopowders on the catalytic intermediate pyrolysis of buckwheat straw by using TGA-FTIR method [J/OL]. Journal of Analytical and Applied Pyrolysis,2020,152:104882[2022-10-01]. https://doi.org/10.1016/j.jaap.2020.104882.
[52] Zhou Y,Wang Y P,Fan L L,et al. Fast microwave-assisted catalytic co-pyrolysis of straw stalk and soapstock for bio-oil production[J]. Journal of Analytical and Applied Pyrolysis,2017,124:35-41.
[53] Eschenbacher A,Saraeian A,Jensen P A,et al. Deoxygenation of wheat straw fast pyrolysis vapors over NaAl2O3 catalyst for production of bio-oil with low acidity[J/OL]. Chemical Engineering Journal,2020,394:124878[2022-10-01]. https://doi.org/10.1016/j.cej.2020.124878.
[54] Chen Y X,Dong L,Miao J X,et al. Hydrothermal liquefaction of corn straw with mixed catalysts for the production of bio-oil and aromatic compounds[J/OL]. Bioresource Technology,2019,294:122148 [2022-10-01]. https://doi.org/10.1016/j.biortech.2019.122148.
[55] Wu Q H,Wang Y P,Jiang L,et al. Microwave assisted catalytic upgrading of co-pyrolysis vapor using HZSM-5 and MCM-41 for bio-oil production: co-feeding of soapstock and straw in a downdraft reactor[J/OL]. Bioresource Technology,2020,299:122611[2022-10-01]. https://doi.org/10.1016/j.biortech.2019.122611.
[56] Zhao X Q,Wang W L,Liu H Z,et al. Temperature rise and weight loss characteristics of wheat straw under microwave heating[J]. Journal of Analytical and Applied Pyrolysis,2014,107:59-66.
[57] Zhao F T,Wang F,Zhang F,et al. Catalytic hydropyrolysis of crop straws with different biochemical composition[J/OL]. International Journal of Hydrogen Energy,2022(2022-03-31) [2022-10-01]. https://doi.org/10.1016/j.ijhydene.2022.03.047.
[58] Putun A. Rice straw as a bio-oil source via pyrolysis and steam pyrolysis[J]. Energy,2004,29:2171-2180.
[59] Encinar J M,González J F,González J. Fixed bed pyrolysis of Cynara cardunculus L. product yields and compositions[J]. Fuel Processing Technology,2000,68(3):209-222.

基金

基金项目:新疆生产建设兵团重大科技专项“回收地膜再利用关键技术研究与示范”(2022AB017);新疆维吾尔自治区天山英才计划(2021)
PDF(751 KB)

文章所在专题

棉副利用

503

Accesses

0

Citation

Detail

段落导航
相关文章

/