Application and prospect of molecular design breeding in cotton

Zhao Junjie, Ren Zhongying, Zhang Zhiqiang, Zhang Fei, Liu Yangai, He Kunlun, Guo Jinfeng, Zhou Xiaojian, Zhang Wensheng, Wang Haijuan, Li Wei, Yang Daigang

PDF(2200 KB)
PDF(2200 KB)
Cotton Science ›› 2023, Vol. 35 ›› Issue (5) : 412-428. DOI: 10.11963/cs20230028
REVIEW & INTERPRETATION

Application and prospect of molecular design breeding in cotton

Author information +
History +

Abstract

Cotton is an important cash crop and main raw materials for textile industry, which plays a critical role in economic development of China. Since the founding of the People’s Republic of China, traditional breeding technology has made a great contribution to improve cotton production. With the advancement of sequencing technology, multi-omics research, and gene editing techniques, precise and efficient molecular design breeding has become an inevitable direction for cotton breeding. This review summarizes the present status of cotton production, the history of breeding development, and the achievements of molecular design breeding in genomic research, fiber development, disease resistance and mining of the molecular module of important traits, and proposes directions and path for the future cotton breeding.

Keywords

cotton / breeding technology / molecular design breeding / genomics / molecular module / disease resistance

Cite this article

Download Citations
Zhao Junjie , Ren Zhongying , Zhang Zhiqiang , Zhang Fei , Liu Yangai , He Kunlun , Guo Jinfeng , Zhou Xiaojian , Zhang Wensheng , Wang Haijuan , Li Wei , Yang Daigang. Application and prospect of molecular design breeding in cotton[J]. Cotton Science, 2023, 35(5): 412-428. https://doi.org/10.11963/cs20230028

References

[1]
国家统计局. 国家统计局关于2022年棉花产量的公告[EB/OL]. ( 2022-12-26)[2023-09-25]. http://www.Stats.Gov.Cn/sj/zxfb/202302/t20230203_1901689.html.
National Burearu of Statistics. Bulletin on national cotton output in 2022[EB/OL]. ( 2022-12-26)[2023-09-25]. http://www.Stats.Gov.Cn/sj/zxfb/202302/t20230203_1901689.html.
[2]
种康, 李家洋. 植物科学发展催生新一轮育种技术革命[J/OL]. 中国科学:生命科学, 2021, 51(10): 1353-1355[2023-09-25]. https://doi.org/10.1360/SSV-2021-0367.
Chong Kang, Li Jiayang. The development of plant science has brought about a new revolution in breeding technology[J/OL]. Scientia Sinica (Vitae), 2021, 51(10): 1353-1355[2023-09-25]. https://doi.org/10.1360/SSV-2021-0367.
[3]
郝怀庆, 刘丽丽, 姚远, 等. 分子模块设计育种技术在玉米育种中的应用及前景展望[J/OL]. 中国科学院院刊, 2018, 33(9): 923-931[2023-09-25]. https://doi.org/10.16418/j.issn.1000-3045.2018.09.005.
Hao Huaiqing, Liu Lili, Yao Yuan, et al. Application and prospect of molecular module-based crop design technology in maize breeding[J/OL]. Bulletin of Chinese Academy of Sciences, 2018, 33(9): 923-931[2023-09-25]. https://doi.org/10.16418/j.issn.1000-3045.2018.09.005.
[4]
吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望[J/OL]. 遗传, 2018, 40(10): 841-857[2023-09-25]. https://doi.org/10.16288/j.yczz.18-213.
Wu Bi, Hu Wei, Xing Yongzhong. The history and prospect of rice genetic breeding in China[J/OL]. Hereditas, 2018, 40(10): 841-857[2023-09-25]. https://doi.org/10.16288/j.yczz.18-213.
[5]
景海春, 田志喜, 种康, 等. 分子设计育种的科技问题及其展望概论[J/OL]. 中国科学: 生命科学, 2021, 51(10): 1355-1365[2023-09-25]. https://doi.org/10.1360/SSV-2021-0214.
Jing Haichun, Tian Zhixi, Chong Kang, et al. Progress and perspective of molecular design breeding[J/OL]. Scientia Sinica (Vitae), 2021, 51(10): 1355-1365[2023-09-25]. https://doi.org/10.1360/SSV-2021-0214.
[6]
Peleman J D, van der Voort J R, Breeding by design[J/OL]. Trends in Plant Science, 2003, 8(7): 330-334[2023-09-25]. https://doi.org/10.1016/s1360-1385(03)00134-1.
[7]
孔繁玲, 姜保功, 张群远, 等. 建国以来我国黄淮棉区棉花品种的遗传改良I. 产量及产量组分的改良[J]. 作物学报, 2000, 26(2): 148-156.
Kong Fanling, Jiang Baogong, Zhang Qunyuan, et al. Genetic improvements of cotton varieties in huang-huai region in China since 1950s. I. lmprovements on yield and yield components[J]. Acta Agronomica Sinica, 2000, 26(2): 148-156.
[8]
汪志国, 王思明. 美棉在中国的引种与发展[J/OL]. 中国农学通报, 2006, 22(3): 421-426[2023-09-25]. https://doi.org/10.11924/j.issn.1000-6850.0603421.
Wang Zhiguo, Wang Siming. Introduction and development of American cotton in China[J/OL]. Chinese Agriculture Science Bulletin, 2006, 22(3): 421-426[2023-09-25]. https://doi.org/10.11924/j.issn.1000-6850.0603421.
[9]
喻树迅. 中国棉花产业百年发展历程[J/OL]. 农学学报, 2018, 8(1): 93-99[2023-09-25]. https://doi.org/10.11923/j.issn.2095-4050.cjas2018-1-093.
Yu Shuxun. The development of cotton production in the recent hundred years of China[J/OL]. Journal of Agriculture, 2018, 8(1): 93-99[2023-09-25]. https://doi.org/10.11923/j.issn.2095-4050.cjas2018-1-093.
[10]
黄滋康. 中国棉花品种及其系谱[M]. 北京: 中国农业出版社, 2007.
Huang Zikang. Cotton varieties and their genealogy in China[M]. Beijing: China Agriculture Press, 2007.
[11]
李玉才, 张柱汉. 徐州209棉种的选育经过[J/OL]. 中国农业科学, 1963, 4(8): 12-16[2023-09-25]. https://doi.org/10.3864/j.issn.0578-1752.1963-04-08-12-16.
Li Yucai, Zhang Zhuhan. The breeding process of Xuzhou 209[J/OL]. Scientia Agricultura Sinica, 1963, 4(8): 12-16[2023-09-25]. https://doi.org/10.3864/j.issn.0578-1752.1963-04-08-12-16.
[12]
白岩, 彭军, 赵素琴, 等. 我国棉花大品种的历史沿革与发展趋势分析[J/OL]. 棉花学报, 2022, 34(4): 325-337[2023-09-25]. https://doi.org/10.11963/cs20220011.
Bai Yan, Peng Jun, Zhao Suqin, et al. A retrospective analysis of the historical evolution and developing trend of mega cotton varieties in China[J/OL]. Cotton Science, 2022, 34(4): 325-337[2023-09-25]. https://doi.org/10.11963/cs20220011.
[13]
郭香墨, 谭联望, 刘正德. 中棉所12的种质资源价值评估[J]. 中国棉花, 2002, 29(12): 12-14.
Guo Xiangmo, Tan Lianwang, Liu Zhengde. Assessment of germplasm resources in Zhongmiansuo 12[J]. China Cotton, 2002, 29(12): 12-14.
[14]
黄祯茂, 喻树迅, 刁光中, 等. 适合麦棉两熟夏套棉花新品种——中棉所16[J]. 中国新技术新产品精选, 1997(1): 14.
Huang Zhenmao, Yu Shuxun, Diao Guangzhong, et al. New cotton varieties suitable for wheat and cotton summer sets—Zhongmiansuo 16[J]. New Technologies and New Products of China, 1997(1): 14.
[15]
高产优质多抗棉花新品种中棉所19——国家科学技术进步一等奖[J]. 中国棉花, 2007, 34(9): 28.
High-yielding, high-quality and multi-resistant new cotton varie-ty Zhongmiansuo 19—first prize of national science and technology progress[J]. China Cotton, 2007, 34(9): 28.
[16]
尤满仓. 陆地棉——军棉一号[J]. 新疆农垦科技, 1979(5): 59.
You Mancang. Upland cotton—Junmian 1[J]. Xinjiang Farm Research of Science and Technology, 1979(5): 59.
[17]
马晓梅, 李保成, 李生秀, 等. 优良早熟陆地棉新陆早32号与新陆早33号的选育及应用[J/OL]. 中国种业, 2009(5): 55-56[2023-09-25]. https://doi.org/10.19462/j.cnki.1671-895x.2009.05.028.
Ma Xiaomei, Li Baocheng, Li Shengxiu, et al. Selection and application of Xinluzao 32 and Xinluzao 33 for excellent early maturing upland cotton[J/OL]. China Seed Industry, 2009(5): 55-56[2023-09-25]. https://doi.org/10.19462/j.cnki.1671-895x.2009.05.028.
[18]
朱家辉, 宁新民, 孔庆平, 等. 高产抗病棉花新品种——新陆中54号[J/OL]. 中国棉花, 2012, 39(8): 33[2023-09-25]. https://doi.org/10.11963/issn.1000-632X.20120811.
Zhu Jiahui, Ning Xinmin, Kong Qingping, et al. New varieties of high yield and disease-resistant cotton—Xinluzhong 54[J/OL]. China Cotton, 2012, 39(8): 33[2023-09-25]. https://doi.org/10.11963/issn.1000-632X.20120811.
[19]
黎裕, 王建康, 邱丽娟, 等. 中国作物分子育种现状与发展前景[J/OL]. 作物学报, 2010, 36(9): 1425-1430[2023-09-25]. https://doi.org/10.3724/SP.J.1006.2010.01425.
Li Yu, Wang Jiankang, Qiu Lijuan, et al. Crop molecular breeding in China: current status and perspectives[J/OL]. Acta Agronomica Sinica, 2010, 36(9): 1425-1430[2023-09-25]. https://doi.org/10.3724/SP.J.1006.2010.01425.
[20]
Yu H, Zhang L. Study on the maize genetic transformation technology[J]. Maize Science, 2011, 19(5): 64-66.
[21]
李付广, 袁有禄. 棉花分子育种进展与展望[J/OL]. 中国农业科技导报, 2011, 13(5): 1-8[2023-09-25]. https://doi.org/10.3969/j.issn.1008-0864.2011.05.01.
Li Fuguang, Yuan Youlu. Progress and prospect of cotton molecular breeding[J/OL]. Journal of Agricultural Science and Technology, 2011, 13(5): 1-8[2023-09-25]. https://doi.org/10.3969/j.issn.1008-0864.2011.05.01.
[22]
商海红, 于霁雯, 石玉真, 等. 棉花优异品质及抗性基因挖掘与分子育种[J/OL]. 棉花学报, 2017, 29(S1): 62-71[2023-09-25]. https://doi.org/10.11963/1002-7807.shhyyl.20170825.
Shang Haihong, Yu Jiwen, Shi Yuzhen, et al. Identification of QTL/genes of fiber yield, quality and disease resistance, and molecular breeding in cotton[J/OL]. Cotton Science, 2017, 29(S1): 62-71[2023-09-25]. https://doi.org/10.11963/1002-7807.shhyyl.20170825.
[23]
张锐, 王远, 孟志刚, 等. 国产转基因抗虫棉研究回顾与展望[J]. 中国农业科技导报, 2007, 9(4): 32-42.
Zhang Rui, Wang Yuan, Meng Zhigang, et al. Retrospect and prospect of research on Chinese transgenic insecticidal cotton[J]. Journal of Agricultural Science and Technology, 2007, 9(4): 32-42.
[24]
郭三堆, 王远, 孙国清, 等. 中国转基因棉花研发应用二十年[J/OL]. 中国农业科学, 2015, 48(17): 3372-3387[2023-09-25]. https://doi.org/10.3864/j.issn.0578-1752.2015.17.005.
Guo Sandui, Wang Yuan, Sun Guoqing, et al. Twenty years of research and application of transgenic cotton in China[J/OL]. Scientia Agricultura Sinica, 2015, 48(17): 3372-3387[2023-09-25]. https://doi.org/10.3864/j.issn.0578-1752.2015.17.005.
[25]
张安红, 肖娟丽, 赵战胜, 等. 转基因抗虫棉研究进展[J/OL]. 生物技术进展, 2023, 13(5): 657-662[2023-09-25]. https://doi.org/10.19586/j.2095-2341.2023.0019.
Zhang Anhong, Xiao Juanli, Zhao Zhansheng, et al. Research progress on transgenic insect resistant cotton[J/OL]. Current Biotechnology, 2023, 13(5): 657-662[2023-09-25]. https://doi.org/10.19586/j.2095-2341.2023.0019.
[26]
黄季焜, 米建伟, 林海, 等. 中国10年抗虫棉大田生产: Bt抗虫棉技术采用的直接效应和间接外部效应评估[J/OL]. 中国科学: 生命科学, 2010, 40(3): 260-272[2023-09-25]. https://doi.org/10.1007/s11427-010-0035-2.
Huang Jikun, Mi Jianwei, Lin Hai, et al. A decade of Bt cotton in farmer fields in China: assessing the direct effects and indirect externalities of Bt cotton adoption in China[J/OL]. Scientia Sinica (Vitae), 2010, 40(3): 260-272[2023-09-25]. https://doi.org/10.1007/s11427-010-0035-2.
[27]
代帅, 张先亮, 冯克云, 等. 早熟机采棉品种中棉113在新疆引种示范表现及栽培技术要点[J/OL]. 中国棉花, 2022, 49(2): 34-36[2023-09-25]. https://doi.org/10.11963/cc20210181.
Dai Shuai, Zhang Xianliang, Feng Keyun, et al. Phenotypic characteristics and cultivation techniques of an early maturing and machine-harvested cotton variety Zhongmian 113 in introduction and demonstration of Xinjiang[J/OL]. China Cotton, 2022, 49(2): 34-36[2023-09-25]. https://doi.org/10.11963/cc20210181.
[28]
王凯鸿, 谢晓宇, 刘娟娟, 等. 早熟优质陆地棉品种中棉113高产高效栽培技术[J/OL]. 中国棉花, 2021, 48(1): 32-33[2023-09-25]. https://doi.org/10.11963/1000-632X.wkhmxf.20210106.
Wang Kaihong, Xie Xiaoyu, Liu Juanjuan, et al. High yield and efficiency cultivation techniques of an upland cotton cultivar, Zhongmian 113, with early maturity and excellent fiber quality[J/OL]. China Cotton, 2021, 48(1): 32-33[2023-09-25]. https://doi.org/10.11963/1000-632X.wkhmxf.20210106.
[29]
刘晓阳. 河南棉花种做强“中国芯”[N]. 河南日报, 2022-03-22( 2).
Liu Xiaoyang. Cotton cultivar from Henan make the "Chinese seed chip"[N]. Henan Daily, 2022-03-22( 2).
[30]
李丽颖. 国家棉花产业技术体系优质早熟棉观摩会举行[N]. 农民日报, 2022-11-04( 6).
Li Liying. Field days of early-maturing cotton cultivars of China agirculture research system of cotton[N]. Farmers' Daily, 2022-11-04( 6).
[31]
张文红, 姜蕴真. “安阳芯”植入“中国棉”[N]. 安阳日报, 2022-10-11( 1).
Zhang Wenhong, Jiang Yunzhen. The "chip" level cotton cultivar enpower Chinese cotton industry[N]. Anyang Daily, 2022-10-11( 1).
[32]
薛勇彪, 韩斌, 种康, 等. 水稻分子模块设计研究成果与展望[J/OL]. 中国科学院院刊, 2018, 33(9): 900-908[2023-09-25]. https://doi.org/10.16418/j.issn.1000-3045.2018.09.002.
Xue Yongbiao, Han Bin, Chong Kang, et al. Achievements and prospect of designer breeding by molecular modules in rice[J/OL]. Bulletin of Chinese Academy of Sciences, 2018, 33(9): 900-908[2023-09-25]. https://doi.org/10.16418/j.issn.1000-3045.2018.09.002.
[33]
田志喜, 刘宝辉, 杨艳萍, 等. 我国大豆分子设计育种成果与展望[J/OL]. 中国科学院院刊, 2018, 33(9): 915-922[2023-09-25]. https://doi.org/10.16418/j.issn.1000-3045.2018.09.004.
Tian Zhixi, Liu Baohui, Yang Yanping, et al. Update and perspect of soybean molecular module-based designer breeding in China[J/OL]. Bulletin of Chinese Academy of Sciences, 2018, 33(9): 915-922[2023-09-25]. https://doi.org/10.16418/j.issn.1000-3045.2018.09.004.
[34]
傅向东, 刘倩, 李振声, 等. 小麦基因组研究现状与展望[J/OL]. 中国科学院院刊, 2018, 33(9): 909-914[2023-09-25]. https://doi.org/10.16418/j.issn.1000-3045.2018.09.003.
Fu Xiangdong, Liu Qian, Li Zhensheng, et al. Research achievement and prospect development on wheat genome[J/OL]. Bulletin of Chinese Academy of Sciences, 2018, 33(9): 909-914 [2023-09-25]. https://doi.org/10.16418/j.issn.1000-3045.2018.09.003.
[35]
Huang G, Huang J Q, Chen X Y, et al. Recent advances and future perspectives in cotton research[J/OL]. Annual Review of Plant Biology, 2021, 72: 437-462[2023-09-01]. https://doi.org/10.1146/annurev-arplant-080720-113241.
[36]
Wang K B, Wang Z W, Li F G, et al. The draft genome of a diploid cotton Gossypium raimondii[J/OL]. Nature Genetics, 2012, 44(10): 1098-1103[2023-09-25]. https://doi.org/10.1038/ng.2371.
[37]
Paterson A H, Wendel J F, Gundlach H, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres[J/OL]. Nature, 2012, 492(7429): 423-427[2023-09-25]. https://doi.org/10.1038/nature11798.
[38]
Udall J A, Long E, Hanson C, et al. De novo genome sequence assemblies of Gossypium raimondii and Gossypium turneri[J/OL]. G3, 2019, 9(10): 3079-3085[2023-09-25]. https://doi.org/10.1534/g3.119.400392.
[39]
Wang M J, Li J Y, Wang P C, et al. Comparative genome analyses highlight transposon-mediated genome expansion and the evolutionary architecture of 3D genomic folding in cotton[J/OL]. Molecular Biology and Evolution, 2021, 38(9): 3621-3636[2023-09-25]. https://doi.org/10.1093/molbev/msab128.
[40]
Li F G, Fan G Y, Wang K B, et al. Genome sequence of the cultivated cotton Gossypium arboreum[J/OL]. Nature Genetics, 2014, 46(6): 567-572[2023-09-25]. https://doi.org/10.1038/ng.2987.
[41]
Huang G, Wu Z G, Percy R G, et al. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution[J/OL]. Nature Genetics, 2020, 52(5): 516-524[2023-09-25]. https://doi.org/10.1038/s41588-020-0607-4.
[42]
Du X M, Huang G, He S P, et al. Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits[J/OL]. Nature Genetics, 2018, 50(6): 796-802[2023-09-25]. https://doi.org/10.1038/s41588-018-0116-x.
[43]
Li F G, Fan G Y, Lu C R, et al. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution[J/OL]. Nature Biotechnology, 2015, 33(5): 524-530[2023-09-25]. https://doi.org/10.1038/nbt.3208.
[44]
Zhang T Z, Hu Y, Jiang W K, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement[J/OL]. Nature Biotechnology, 2015, 33(5): 531-537[2023-09-25]. https://doi.org/10.1038/nbt.3207.
[45]
Hu Y, Chen J D, Fang L, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton[J/OL]. Nature Genetics, 2019, 51(4): 739-748[2023-09-25]. https://doi.org/10.1038/s41588-019-0371-5.
[46]
Chen Y Z, Fu M C, Li H, et al. High-oleic acid content, nontransgenic allotetraploid cotton (Gossypium hirsutum L.) gene-rated by knockout of GhFAD2 genes with CRISPR/Cas9 system[J/OL]. Plant Biotechnology Journal, 2021, 19(3): 424[2023-09-25]. https://doi.org/10.1111/pbi.13507.
[47]
Perkin L C, Bell A, Hinze L L, et al. Genome assembly of two nematode-resistant cotton lines (Gossypium hirsutum L.)[J/OL]. G3, 2021, 11(11): jkab276[2023-09-25]. https://doi.org/10.1093/g3journal/jkab276.
[48]
Wang M J, Tu L L, Yuan D J, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense[J/OL]. Nature Genetics, 2019, 51(2): 224-229[2023-09-25]. https://doi.org/10.1038/s41588-018-0282-x.
[49]
Wang M J, Tu L L, Lin M, et al. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication[J/OL]. Nature Genetics, 2017, 49(4): 579-587[2023-09-25]. https://doi.org/10.1038/ng.3807.
[50]
Yang Z E, Ge X Y, Yang Z R, et al. Extensive intraspecific gene order and gene structural variations in upland cotton cultivars[J/OL]. Nature Communications, 2019, 10(1): 2989[2023-09-25]. https://doi.org/10.1038/s41467-019-10820-x.
[51]
Ma Z Y, Zhang Y, Wu L Q, et al. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement[J/OL]. Nature Genetics, 2021, 53(9): 1385-1391[2023-09-25]. https://doi.org/10.1038/s41588-021-00910-2.
[52]
Liu X, Zhao B, Zheng H J, et al. Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites[J/OL]. Scientific Reports, 2015, 5: 14139[2023-09-25]. https://doi.org/10.1038/srep14139.
[53]
Yuan D J, Tang Z H, Wang M J, et al. The genome sequence of sea-island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres[J/OL]. Scientific Reports, 2015, 5: 17662[2023-09-25]. https://doi.org/10.1038/srep17662.
[54]
John M E, Crow L J. Gene expression in cotton (Gossypium hirsutum L.) fiber: cloning of the mRNAs[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(13): 5769-5773[2023-09-25]. https://doi.org/10.1073/pnas.89.13.5769.
[55]
Yang Z E, Gao C X, Zhang Y H, et al. Recent progression and future perspectives in cotton genomic breeding[J/OL]. Journal of Integrative Plant Biology, 2022, 65(2): 548-569[2023-09-25]. https://doi.org/10.1111/jipb.13388.
[56]
Salih H, Gong W F, He S P, et al. Genome-wide characterization and expression analysis of MYB transcription factors in Gossypium hirsutum[J/OL]. BMC Genetics, 2016, 17(1): 129[2023-09-25]. https://doi.org/10.1186/s12863-016-0436-8.
[57]
Machado A, Wu Y R, Yang Y M, et al. The MYB transcription factor GhMYB25 regulates early fibre and trichome development[J/OL]. The Plant Journal, 2009, 59(1): 52-62[2023-09-25]. https://doi.org/10.1111/j.1365-313X.2009.03847.x.
[58]
Suo J F, Liang X E, Pu L, et al. Identification of GhMYB109encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.)[J/OL]. Biochimica et Biophysica Acta, 2003, 1630(1): 25-34[2023-09-25]. https://doi.org/10.1016/j.bbaexp.2003.08.009.
[59]
Walford S A, Wu Y, Llewellyn D J, et al. GhMYB25-like: a key factor in early cotton fibre development[J/OL]. The Plant Journal, 2011, 65(5): 785-797[2023-09-25]. https://doi.org/10.1111/j.1365-313X.2010.04464.x.
[60]
Wan Q, Guan X Y, Yang N N, et al. Small interfering RNAs from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development[J/OL]. New Phytologist, 2016, 210(4): 1298-1310[2023-09-25]. https://doi.org/10.1111/nph.13860.
[61]
Wu H T, Tian Y, Wan Q, et al. Genetics and evolution of MIXTA genes regulating cotton lint fiber development[J/OL]. New Phytologist, 2018, 217(2): 883-895[2023-09-25]. https://doi.org/10.1111/nph.14844.
[62]
Xing K, Liu Z, Liu L, et al. N-6-Methyladenosine mRNA modification regulates transcripts stability associated with cotton fiber elongation[J/OL]. The Plant Journal, 2023, 115(4): 967-985[2023-09-25]. https://doi.org/10.1111/tpj.16274.
[63]
Wang Z, Yang Z R, Li F G. Updates on molecular mechanisms in the development of branched trichome in Arabidopsis and nonbranched in cotton[J/OL]. Plant Biotechnology Journal, 2019, 17(9): 1706-1722[2023-09-25]. https://doi.org/10.1111/pbi.13167.
[64]
Liao W B, Ruan M B, Cui B M, et al. Isolation and characterization of a GAI/RGA-like gene from Gossypium hirsutum[J/OL]. Plant Growth Regulation, 2009, 58: 35-45[2023-09-25]. https://doi.org/10.1007/s10725-008-9350-z.
[65]
Shan C M, Shangguan X X, Zhao B, et al. Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3[J/OL]. Nature Communications, 2014, 5: 5519[2023-09-25]. https://doi.org/10.1038/ncomms6519.
[66]
Xu B, Gou J Y, Li F G, et al. A cotton BURP domain protein interacts with α-expansin and their co-expression promotes plant growth and fruit production[J/OL]. Molecular Plant, 2013, 6(3): 945-958[2023-09-25]. https://doi.org/10.1093/mp/sss112.
[67]
de Lucas M, Daviere J-M, Rodríguez-Falcón M, et al. A mole-cular framework for light and gibberellin control of cell elongation[J/OL]. Nature, 2008, 451(7177): 480-484[2023-09-25]. https://doi.org/10.1038/nature06520.
[68]
Hu H Y, He X, Tu L L, et al. GhJAZ2 negatively regulates cotton fiber initiation by interacting with the R2R3-MYB transcription factor GhMYB25-like[J/OL]. The Plant Journal, 2016, 88(6): 921-935[2023-09-25]. https://doi.org/10.1111/tpj.13273.
[69]
Sun Y, Veerabomma S, Abdel-Mageed H A, et al. Brassinosteroid regulates fiber development on cultured cotton ovules[J/OL]. Plant and Cell Physiology, 2005, 46(8): 1384-1391[2023-09-25]. https://doi.org/10.1093/pcp/pci150.
[70]
Sun Y, Veerabomma S, Fokar M, et al. Brassinosteroid signa-ling affects secondary cell wall deposition in cotton fibers[J/OL]. Industrial Crops and Products, 2015, 65: 334-342[2023-09-25]. https://doi.org/10.1016/j.indcrop.2014.11.028.
[71]
Luo M, Xiao Y H, Li X B, et al. GhDET2, a steroid 5α-reductase, plays an important role in cotton fiber cell initiation and elongation[J/OL]. The Plant Journal, 2007, 51(3): 419-430[2023-09-25]. https://doi.org/10.1111/j.1365-313X.2007.03144.x.
[72]
Yang Z R, Zhang C J, Yang X J, et al. PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation[J/OL]. New Phytologist, 2014, 203(2): 437-448[2023-09-25]. https://doi.org/10.1111/nph.12824.
[73]
Wu H H, Fan L Q, Guo M Z, et al. GhPRE1A promotes cotton fibre elongation by activating the DNA-binding bHLH factor GhPAS1[J/OL]. Plant Biotechnology Journal, 2023, 21(5): 896-898[2023-09-25]. https://doi.org/10.1111/pbi.14005.
[74]
Zhou Y, Zhang Z T, Li M, et al. Cotton (Gossypium hirsutum) 14-3-3 proteins participate in regulation of fibre initiation and elongation by modulating brassinosteroid signalling[J/OL]. Plant Biotechnology Journal, 2015, 13(2): 269-280[2023-09-25]. https://doi.org/10.1111/pbi.12275.
[75]
Shi Y H, Zhu S W, Mao X Z, et al. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation[J/OL]. The Plant Cell, 2006, 18(3): 651-664[2023-09-25]. https://doi.org/10.1105/tpc.105.040303.
[76]
Zhang M, Zeng J Y, Long H, et al. Auxin regulates cotton fiber initiation via GhPIN-mediated auxin transport[J/OL]. Plant and Cell Physiology, 2017, 58(2): 385-397[2023-09-25]. https://doi.org/10.1093/pcp/pcw203.
[77]
Wang M Y, Zhao P M, Cheng H Q, et al. The cotton transcription factor TCP14 functions in auxin-mediated epidermal cell differentiation and elongation[J/OL]. Plant Physiology, 2013, 162(3): 1669-1680[2023-09-25]. https://doi.org/10.1104/pp.113.215673.
[78]
Zhang H P, Shao M Y, Qiao Z J, et al. Effect of phytohormones on fiber initiation of cotton ovule[J/OL]. Acta Physiologiae Plantarum, 2009, 31: 979-986[2023-09-25]. https://doi.org/10.1007/s11738-009-0313-4.
[79]
Khan A Q, Li Z H, Ahmed M M, et al. Eriodictyol can modulate cellular auxin gradients to efficiently promote in vitro cotton fibre development[J/OL]. BMC Plant Biology, 2019, 19(1): 443[2023-09-25]. https://doi.org/10.1186/s12870-019-2054-x.
[80]
Li L, Huang J F, Qin L X, et al. Two cotton fiber-associated glycosyltransferases, GhGT43A1 and GhGT43C1, function in hemicellulose glucuronoxylan biosynthesis during plant deve-lopment[J/OL]. Physiologia Plantarum, 2014, 152(2): 367-379[2023-09-25]. https://doi.org/10.1111/ppl.12190.
[81]
Sun W J, Gao Z Y, Wang J, et al. Cotton fiber elongation requires the transcription factor GhMYB212 to regulate sucrose transportation into expanding fibers[J/OL]. New Phytologist, 2019, 222(2): 864-881[2023-09-25]. https://doi.org/10.1111/nph.15620.
[82]
Ding X Y, Li X B, Wang L, et al. Sucrose enhanced reactive oxygen species generation promotes cotton fibre initiation and secondary cell wall deposition[J/OL]. Plant Biotechnology Journal, 2021, 19(6): 1092-1094[2023-09-25]. https://doi.org/10.1111/pbi.13594.
[83]
上官小霞, 曹俊峰, 杨琴莉, 等. 棉花纤维发育的分子机理研究进展[J/OL]. 棉花学报, 2022, 34(1): 33-47[2023-09-25]. https://doi.org/10.11963/cs20210076.
Shangguan Xiaoxia, Cao Junfeng, Yang Qinli, et al. Research progress on the molecular mechanism of cotton fiber development[J/OL]. Cotton Science, 2022, 34(1): 33-47[2023-09-25]. https://doi.org/10.11963/cs20210076.
[84]
Wei Z Z, Li Y H, Ali F, et al. Transcriptomic analysis reveals the key role of histone deacetylation via mediating different phytohormone signalings in fiber initiation of cotton[J/OL]. Cell and Bioscience, 2022, 12(1): 107[2023-09-25]. https://doi.org/10.1186/s13578-022-00840-4.
[85]
Kumar V, Singh B, Singh S K, et al. Role of GhHDA5 in H3K9 deacetylation and fiber initiation in Gossypium hirsutum[J/OL]. The Plant Journal, 2018, 95(6): 1069-1083[2023-09-25]. https://doi.org/10.1111/tpj.14011.
[86]
Feng H, Li X, Chen H, et al. GhHUB2, a ubiquitin ligase, is involved in cotton fiber development via the ubiquitin-26s proteasome pathway[J/OL]. Journal of Experimental Botany, 2018, 69(21): 5059-5075[2023-09-25]. https://doi.org/10.1093/jxb/ery269.
[87]
Gong S Y, Huang G Q, Sun X, et al. Cotton KNL1, encoding a class Ⅱ KNOX transcription factor, is involved in regulation of fibre development[J/OL]. Journal of Experimental Botany, 2014, 65(15): 4133-4147[2023-09-25]. https://doi.org/10.1093/jxb/eru182.
[88]
Di X T, Takken F L, Tintor N. How phytohormones shape interactions between plants and the soil-borne fungus Fusarium oxysporum[J/OL]. Frontiers in Plant Science, 2016, 7: 170[2023-09-25]. https://doi.org/10.3389/fpls.2016.00170.
[89]
Zhang L S, Hua C L, Pruitt R N, et al. Distinct immune sensor systems for fungal endopolygalacturonases in closely related Brassicaceae[J/OL]. Nature Plants, 2021, 7(9): 1254-1263[2023-09-25]. https://doi.org/10.1038/s41477-021-00982-2.
[90]
Wang C, He X W, Wang X X, et al. Ghr-mir5272a-mediated regulation of GhMKK6 gene transcription contributes to the immune response in cotton[J/OL]. Journal of Experimental Botany, 2017, 68(21-22): 5895-5906[2023-09-25]. https://doi.org/10.1093/jxb/erx373.
[91]
Wang C, Guo H B, He X W, et al. Scaffold protein GhMORG1 enhances the resistance of cotton to Fusarium oxysporum by facilitating the MKK6-MPK4 cascade[J/OL]. Plant Biotechnology Journal, 2020, 18(6): 1421-1433[2023-09-25]. https://doi.org/10.1111/pbi.13307.
[92]
赵曾强, 张析, 李潇玲, 等. GhEIN3基因对棉花枯萎病胁迫响应的功能分析[J/OL]. 棉花学报, 2022, 34(3): 173-186[2023-09-25]. https://doi.org/10.11963/cs20210046.
Zhao Zengqiang, Zhang Xi, Li Xiaoling, et al. Functional analysis of GhEIN3 gene in response to cotton Fusarium wilt stress[J/OL]. Cotton Science, 2022, 34(3): 173-186[2023-09-25]. https://doi.org/10.11963/cs20210046.
[93]
赵曾强, 郭文婷, 张析, 等. 棉花抗枯萎病相关基因GhERF5-4D的克隆及功能分析[J/OL]. 生物技术通报, 2022, 38(4): 193-201[2023-09-25]. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2021-1065.
Zhao Zengqiang, Guo Wenting, Zhang Xi, et al. Cloning and functional analysis of GhERF5-4D gene related to Fusarium oxysporum resistance in cotton[J/OL]. Biotechnology Bulletin, 2022, 38(4): 193-201[2023-09-25]. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2021-1065.
[94]
朱荷琴, 李志芳, 冯自力, 等. 我国棉花黄萎病研究十年回顾及展望[J/OL]. 棉花学报, 2017, 29(S1): 37-50[2023-09-25]. https://doi.org/10.11963/1002-7807.zhqzhq.20170825.
Zhu Heqin, Li Zhifang, Feng Zili, et al. Overview of cotton Verticillium wilt research over the past decade in China and its prospect in future[J/OL]. Cotton Science, 2017, 29(S1): 37-50[2023-09-25]. https://doi.org/10.11963/1002-7807.zhqzhq.20170825.
[95]
李廷刚, 巩东营, 张倩倩. 棉花抗黄萎病遗传学研究进展[J/OL]. 农学学报, 2022, 12(9): 31-36[2023-09-25]. https://doi.org/10.11923/j.issn.2095-4050.cjas2021-0038.
Li Tinggang, Gong Dongying, Zhang Qianqian. Genetics of cotton resistance to Verticillium wilt: research progress[J/OL]. Journal of Agriculture, 2022, 12(9): 31-36[2023-09-25]. https://doi.org/10.11923/j.issn.2095-4050.cjas2021-0038.
[96]
Li N Y, Ma X F, Short D P, et al. The island cotton NBS-LRR gene GbANA1 confers resistance to the non-race 1 Verticillium dahliae isolate vd991[J/OL]. Molecular Plant Pathology, 2018, 19(6): 1466-1479[2023-09-25]. https://doi.org/10.1111/mpp.12630.
[97]
Zhang Y H, Jin Y Y, Gong Q, et al. Mechanismal analysis of resistance to Verticillium dahliae in upland cotton conferred by overexpression of RPL18A-6 (Ribosomal Protein L18A-6)[J/OL]. Industrial Crops and Products, 2019, 141: 111742[2023-09-25]. https://doi.org/10.1016/j.indcrop.2019.111742.
[98]
周雪慧, 高二林, 王钰静, 等. GhROP6通过调控茉莉酸合成与木质素代谢参与棉花抗黄萎病反应[J/OL]. 棉花学报, 2022, 34(2): 79-92[2023-09-25]. https://doi.org/10.11963/cs20210047.
Zhou Xuehui, Gao Erlin, Wang Yujing, et al. GhROP6 involved in cotton resistance to Verticillium wilt through regulating jasmonic acid synthesis and lignin metabolism[J/OL]. Cotton Science, 2022, 34(2): 79-92[2023-09-25]. https://doi.org/10.11963/cs20210047.
[99]
Song Y, Zhai Y H, Li L X, et al. BIN2 negatively regulates plant defence against Verticillium dahliae in Arabidopsis and cotton[J/OL]. Plant Biotechnology Journal, 2021, 19(10): 2097-2112[2023-09-25]. https://doi.org/10.1111/pbi.13640.
[100]
李秀青, 王倩, 胡子曜, 等. GhMAPKKK2基因在棉花抗黄萎病中的功能分析[J/OL]. 棉花学报, 2022, 34(1): 1-11[2023-09-25]. https://doi.org/10.11963/cs20210068.
Li Xiuqing, Wang Qian, Hu Ziyao, et al. Functional analysis of GhMAPKKK2 gene in cotton resistance to Verticillium wilt[J/OL]. Cotton Science, 2022, 34(1): 1-11[2023-09-25]. https://doi.org/10.11963/cs20210068.
[101]
Zhang L, Wu Y J, Yu Y A, et al. Acetylation of GhCaM7 enhances cotton resistance to Verticillium dahliae[J/OL]. The Plant Journal, 2023, 114(6): 1405-1424[2023-09-25]. https://doi.org/10.1111/tpj.16200.
[102]
Feng H J, Li C, Zhou J L, et al. A cotton WAKL protein interacted with a DnaJ protein and was involved in defense against Verticillium dahliae[J/OL]. International Journal of Biological Macromolecules, 2021, 167: 633-643[2023-09-25]. https://doi.org/10.1016/j.ijbiomac.2020.11.191.
[103]
Zhou J L, Zhao L H, Wu Y J, et al. A DEK domain-containing protein GhDEK2D mediated Gossypium hirsutum enhanced resistance to Verticillium dahliae[J/OL]. Plant Signaling Behavior, 2022, 17(1): 2024738[2023-09-25]. https://doi.org/10.1080/15592324.2021.2024738.
[104]
Fang L, Wang Q, Hu Y, et al. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits[J/OL]. Nature Genetics, 2017, 49(7): 1089-1098[2023-09-25]. https://doi.org/10.1038/ng.3887.
[105]
Ma Z Y, He S P, Wang X F, et al. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield[J/OL]. Nature Genetics, 2018, 50(6): 803-813[2023-09-25]. https://doi.org/10.1038/s41588-018-0119-7.
[106]
Li Y Q, Si Z F, Wang G P, et al. Genomic insights into the genetic basis of cotton breeding in China[J/OL]. Molecular Plant, 2023, 16(4): 662-677[2023-09-25]. https://doi.org/10.1016/j.molp.2023.01.012.
[107]
Li J Y, Yuan D J, Wang P C, et al. Cotton pan-genome retrieves the lost sequences and genes during domestication and selection[J/OL]. Genome Biology, 2021, 22(1): 119[2023-09-25]. https://doi.org/10.1186/s13059-021-02351-w.
[108]
Wang M J, Li J Y, Qi Z Y, et al. Genomic innovation and regulatory rewiring during evolution of the cotton genus Gossypium[J/OL]. Nature Genetics, 2022, 54(12): 1959-1971[2023-09-25]. https://doi.org/10.1038/s41588-022-01237-2.
[109]
Jin S K, Han Z G, Hu Y, et al. Structural variation (SV)-based pan-genome and GWAS reveal the impacts of SVs on the speciation and diversification of allotetraploid cottons[J/OL]. Molecular Plant, 2023, 16(4): 678-693[2023-09-25]. https://doi.org/10.1016/j.molp.2023.02.004.
[110]
Chen Z J, Sreedasyam A, Ando A, et al. Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement[J/OL]. Nature Genetics, 2020, 52(5): 525-533[2023-09-25]. https://doi.org/10.1038/s41588-020-0614-5.
[111]
Peng R H, Xu Y C, Tian S L, et al. Evolutionary divergence of duplicated genomes in newly described allotetraploid cottons[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(39): e2208496119[2023-09-25]. https://doi.org/10.1073/pnas.2208496119.
[112]
He S P, Sun G F, Geng X L, et al. The genomic basis of geographic differentiation and fiber improvement in cultivated cotton[J/OL]. Nature Genetics, 2021, 53(6): 916-924[2023-09-25]. https://doi.org/10.1038/s41588-021-00844-9.
[113]
Zhang Z B, Chai M, Yang Z E, et al. Grand: an integrated genome, transcriptome resources, and gene network database for Gossypium[J/OL]. Frontiers in Plant Science, 2022, 13: 773107[2023-09-25]. https://doi.org/10.3389/fpls.2022.773107.
[114]
Yang Z Q, Wang J, Huang Y M, et al. CottonMD: a multi-omics database for cotton biological study[J/OL]. Nucleic Acids Research, 2022, 51(D1): 1446-1456[2023-09-25]. https://doi.org/10.1093/nar/gkac863.
[115]
Dai F, Chen J, Zhang Z, et al. COTTONOMICS: a comprehensive cotton multi-omics database[J/OL]. Database, 2022, 2022: baac080[2023-09-25]. https://doi.org/10.1093/database/baac080.
[116]
汪海, 赖锦盛, 王海洋, 等. 作物智能设计育种——自然变异的智能组合和人工变异的智能创制[J/OL]. 中国农业科技导报, 2022, 24(6): 1-8[2023-09-25]. https://doi.org/10.13304/j.nykjdb.2022.0391.
Wang Hai, Lai Jinsheng, Wang Haiyang, et al. Bipartite intelligent design of crops-intelligent combination of natural variation and intelligent creation of artificial variation[J/OL]. Journal of Agricultural Science and Technology, 2022, 24(6): 1-8[2023-09-25]. https://doi.org/10.13304/j.nykjdb.2022.0391.
[117]
郭锐, 钱前, 高振宇. 水稻生物育种研究进展[J]. 中国基础科学, 2022, 24(4): 9-17.
Guo Rui, Qian Qian, Gao Zhenyu. Research progress on rice bio-breeding[J]. China Basic Science, 2022, 24(4): 9-17.
[118]
李树磊, 郑红艳, 王磊. 基因编辑技术在作物育种中的应用与展望[J/OL]. 生物技术通报, 2020, 36(11): 209-221[2023-09-25]. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2020-0328.
Li Shulei, Zheng Hongyan, Wang Lei. Application and prospect of gene editing technology in crop breeding[J/OL]. Biotechnology Bulletin, 2020, 36(11): 209-221[2023-09-25]. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2020-0328.
[119]
Li J Y, Manghwar H, Sun L, et al. Whole genome sequencing reveals rare off-target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR-Cas9-edited cotton plants[J/OL]. Plant Biotechnology Journal, 2019, 17(5): 858-868[2023-09-25]. https://doi.org/10.1111/pbi.13020.
[120]
Ge X, Xu J, Yang Z, et al. Efficient genotype-independent cotton genetic transformation and genome editing[J/OL]. Journal of Integrative Plant Biology, 2023, 65(4):907-917[2023-09-25]. http://doi.org/10.1111/jipb.13427.
[121]
赵国屏. 合成生物学: 开启生命科学“会聚”研究新时代[J/OL]. 中国科学院院刊, 2018, 33(11): 1135-1149[2023-09-25]. https://doi.org/10.16418/j.issn.1000-3045.2018.11.001.
Zhao Guoping. Synthetic biology: unsealing the convergence era of life science research[J/OL]. Bulletin of Chinese Academy of Sciences, 2018, 33(11): 1135-1149[2023-09-25]. https://doi.org/10.16418/j.issn.1000-3045.2018.11.001.
[122]
严伟, 信丰学, 董维亮, 等. 合成生物学及其研究进展[J/OL]. 生物学杂志, 2020, 7(5): 1-9[2023-09-25]. https://doi.org/10.3969/j.issn.2095-1736.2020.05.001.
Yan Wei, Xin Fengxue, Dong Weiliang, et al. Synthetic biology and research progress[J/OL]. Journal of Biology, 2020, 7(5): 1-9[2023-09-25]. https://doi.org/10.3969/j.issn.2095-1736.2020.05.001.
[123]
Wang W J, Li W K, Wen Z Y, et al. Gossypol broadly inhibits coronaviruses by targeting RNA-dependent RNA polymerases[J/OL]. Advanced Science, 2022, 9(35): e2203499[2023-09-25]. https://doi.org/10.1002/advs.202203499.
[124]
Purushotham P, Ho Ruoya, Zimmer J. Architecture of a catalytically active homotrimeric plant cellulose synthase complex[J/OL]. Science, 2020, 369(6507): 1089-1094[2023-09-25]. https://doi.org/10.1126/science.abb2978.
PDF(2200 KB)

918

Accesses

0

Citation

Detail

Sections
Recommended

/