Estimating Cotton FPAR Based on the Different Vegetation Indexes

JIN Xiu-Liang, LI Shao-Kun, WANG Ke-Ru, XIAO Chun-Hua, WANG Fang-Yong, CHEN  Bing, CHEN Jiang-Lu, Lü Yin-Liang , DIAO Wan-Ying-

PDF(657 KB)
PDF(657 KB)
Cotton Science ›› 2011, Vol. 23 ›› Issue (5) : 447-453. DOI: 10.11963/cs110510

Estimating Cotton FPAR Based on the Different Vegetation Indexes

  • JIN Xiu-liang1,2, LI Shao-kun1,2*, WANG Ke-ru1,2, XIAO Chun-hua1,2, WANG Fang-yong1,2, CHEN bing1,2,3, CHEN Jiang-lu1,2, Lü Yin-liang1,2, DIAO Wan-ying1,2 
Author information +
History +

Abstract

Two field experiments were conducted with different densities and waters, the relationship was analyzed between spectral reflectance and the fraction absorption of photosynthetically active radiation(FPAR), and the estimating models were established for FPAR in the whole growth stages of cotton. The results indicated that it was significant correlations among the FPAR with all the vegetation indexes, the green normalized difference vegetation index(GREENNDVI) and the reflectance ratio (GMI) was better, theirs correlations coefficient(r) were 0.794 and 0.765, respectively, the estimated models of FPAR were established, and the determination coefficients(r2) were 0.657 and 0.633, the root mean square errors(RMSE) were 0.089 and 0.093, respectively. The results suggested that the FPAR can be effectively estimate by spectral parameters during growth stages of cotton.

Keywords

cotton / fraction of absorbed photosynthetically active radiation(FPAR) / vegetation index / estimating models

Cite this article

Download Citations
JIN Xiu-Liang, LI Shao-Kun, WANG Ke-Ru, XIAO Chun-Hua, WANG Fang-Yong, CHEN  Bing, CHEN Jiang-Lu, Lü Yin-Liang , DIAO Wan-Ying- . Estimating Cotton FPAR Based on the Different Vegetation Indexes[J]. Cotton Science, 2011, 23(5): 447-453. https://doi.org/10.11963/cs110510

References

[1] CHURKINA G, Running S W. Contrasting climatic controls on the estimated productivity of global,terrestrial biomes
[J]. Ecosystems, 1998, 1: 206-215.
[2] 吴炳方,曾 源,黄进良.遥感提取植物生理参数LAI/FPAR的研究进展与应用
[J].地球科学进展,2004(4):585-590.        WU Bing-fang, Zeng Yuan, Huang Jin-liang. Overview of LAI/FPAR retrieval from remotely sensed data
[J]. Advance in Earth Sciences, 2004(4): 585-590.
[3] ASRAR G, Fuchs M, Kanemasu E T, et al. Estimating absorbed photosynthetic radiation and leafarea index from spectral reflectance in wheat
[J]. Agronomy Journal, 1984, 76: 300-306.
[4] DANGHTRY C S, Gallo K P, Gowd S N, et al. Spectral estimates of absorbed radiation and phytomass production in corn and soybean canopies
[J]. Remote Sensing of Environment, 1992, 39: 141-152.
[5] PINTER P J. Solar angle independence in the relationship between absorbed PAR and remotely sensed data
[J]. Remote Sensing of Environment, 1993, 46: 19-25.
[6] 周晓东,朱启疆,王锦地,等.夏玉米冠层内PAR截获及FPAR与LAI的关系
[J].自然资源学报,2002,17(1):110-116.      ZHOU Xiao-dong, Zhu Qi-jiang, Wang Jin-di, et al. Interception of PAR,relationship between FPAR and LAI in summer maize canopy
[J]. Journal of Natural Resources, 2002, 17(1): 110-l16.
[7] 王培娟,朱启疆,吴门新,等.冬小麦冠层的FAPAR、LAI、VIs之间关系的研究
[J].遥感信息,2003(3):19-22.       WANG Pei-juan, Zhu Qi-jiang, Wu Men-xin, et al. Research on the relationships among FAPAR,LAI and VIs in the winter wheat canopy
[J]. Remote Sensing Information, 2003(3): 19-22.
[8] 高彦华,陈良富,柳钦火,等.叶绿素吸收的光合有效辐射比率的遥感估算模型研究
[J].遥感学报,2006,10(5):798-803.     GAO Yan-hua, Chen Liang-fu, Liu Qin-huo, et al. Research on remote sensing model for frar absorbed by chlorophyll
[J]. Journal of Remote Sensing, 2006, 10(5): 798-803.
[9] GOWARD S N, Huemmrich K F. Vegetation canopy PAR absorptance and NADI: An assessment for ten tree species with the SAIL model
[J]. Remote Sensing of Environment, 1992, 39: 119- 140.
[10] 金仲辉,黄新寿.由光谱指数估算小麦截取光合有效辐射的数量
[J].遥感技术与应用,1994,9(2):13-19.     JIN Zhong-hui, Huang Xin-shou. Intercept photosynthetically active radiation estimated by spectral reflectance in wheat
[J]. Remote Science Technology and Application, 1994, 9(2): 13- 19.
[11] HIPPS L E, Asrar G, Kanemasu E T. Assessing the interception of photosynthetically active radiation in winter wheat
[J]. Agricultural Meteorology, 1983, 28: 246-253.
[12] FRIEDL M A, Davis F W, Michaelsen J, et al. Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables: An analysis using a scene simulation model and data from FIFE
[J]. Remote Sensing of Environment, 1995, 54: 233-246.
[13] 杨 飞,张 柏,宋开山,等.玉米和大豆光合有效辐射吸收比例与植被指数和叶面积指数的关系
[J].作物学报,2008, 34(11): 2046-2052.      YANG Fei, Zhang Bai, Song Kai-shan, et al. Relationship between fraction of photosynthetically active radiation and vegetation indices,leaf area index of corn and soybean
[J]. Acta Agronomica Sinica, 2008, 34(11): 2046-2052.
[14] PEARSON R L, Miller D L. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie
[C]. Proceedings of the English International Sysposium on Remote Sensing of Environment, 1972, 2: 1375-1381.
[15] PENUELAS J, Baret F, Filella I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance
[J]. Photosynthetica, 1995, 31: 221-230.
[16] LYON J G, Yuan D, Lunetta R S,et al. A change detection experiment using vegetation indices
[J]. Photo-grammetric Engineering & Remote Sensing, 1998, 64(2): 143-150.
[17] GITELSON A A, Merzlyak M. Spectral reflectance changes associated with autumn senescence of asculus hippocastanum and acer platanoides leaves,spectral features and relation to chlorophyll estimation
[J]. Journal Plant Physiology, 1994, 143: 286- 292.
[18] RONDEAUX G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices
[J]. Remote Sensing of Environment, 1996, 55: 95-107.
[19] JORDAN C F. Derivation of leaf area index from quality of light on the forest floor
[J]. Ecology, 1969, 50: 663-666.
[20] ROUSE J W,Haas R H,Schell J A,et al. Monitoring vegetation systems in the great plains with ERTS
[C]. Third Erts Symposium, 1973, 1: 309-317.
[21] BARET E,and Guyot G.Potentials and limits of vegetation indices for LAI and APAR assessment
[J]. Remote Sensing of Environment, 1991, 35: 161-173
[22] DAUGHTRY C T,Walthall C L,Kim M S,et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance
[J]. Remote Sensing of Environment, 2000, 74(2): 229-239.
[23] DRISS H,John R M,Nicoals T,et al. Integrated naarrow-band vegetation indices for prediction of crop cholorophyll content for application to precision agriculture
[J]. Remote Sensing of Environment, 2002, 81(2/3): 416-423.
[24] ZARCO-TEJADA P J, Miller J R, Mohammed T L. Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data
[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(7): 1491-1507.
[25] SELLERS P J, Collatz G J. A revised land surface parameterization (SiB2) for atmospheric GCMS. 1. Model formulation
[J]. Journal Climate, 1996, 9: 676-705.
[26] LOBELL, David B, Asner C B, et al. Remote sensing of regional crop production in the Yaqui Valley, Mexico: estimates and uncertainties
[J]. Agriculture, Ecosystems, and Environment, 2003(94): 205-220.
[27] LIU J, Chen J M, Chen J, et al. A process-based boreal ecosystem productivity simulator using remote sensing inputs
[J]. Remote Sensing of Environment, 1997, 62: l58-175.
[28] CRAMER W, Kicklighter D W, Bondeau A, et al. Comparing global models of terrestrial net primary productivity(NPP): overview and key results
[J]. Global Changing Biology, 1999, 5(Supp.1): l-5.
[29] REICH P B, Turner D P, Bolstad P. An approach to spatially distributed modeling of net primary production(NPP) at landscape scales and its application in validation of EOS NPP products
[J]. Remote Sensing of Environment, 1999, 70: 69-81.
[30] 任建强,陈仲新,唐华俊,等.基于植物净初级生产力模型的区域冬小麦估产研究
[J].农业工程学报,2006,22(5):111- 117.      REN Jian-qiang, Chen Zhong-xin, Tang Hua-jun, et al. Regional yield estimation for winter wheat base on net primary production model
[J]. Transaction of the CSAE, 2006, 22(5): 111-117.
[31] EDUARDO R, Jose R C, Ines M M. Estimating Fapar from nine vegetation indices for irrigated and nonirrigated faba bean and semileafless pea canopies
[J]. Remote Sensing of Environment, 1998, 66: 87-100.
[32] NORTH P R J. Estimation of fAPAR, LAI and vegetation fractional cover from ATSR-2 imagery
[J]. Remote Sensing of Environment, 2002, 80(1): 114-121.
[33] 杨 飞,张 柏,刘志明,等.玉米冠层FPAR的高光谱遥感估算研究-基于PCA方法及近、短波红外波段
[J].国土资源遥感,2008,78(4):9-13.       YANG-Fei, Zhang-Bai, Liu Zhi-Ming, et al. A study of corn FPAR estimation from hyperspectral data based on PCA approach and near-infrared shortwave bands
[J]. Remote Sensing for Land&Resources, 2008, 78(4): 9-13.
[34] 杨晓华,黄敬峰,王秀珍,等.基于支持向量机的水稻叶面积指数高光谱估算模型研究
[J].光谱学与光谱分析,2008,28(8):1837-1841.       YANG Xiao-hua, Huang Jing-feng, Wang Xiu-zhen, et al. The estimation model of rice leaf area index using hyperspectral data based on support vector machine
[J]. Spectroscopy and Spectral Analys, 2008, 28(8): 1837-1841. 
PDF(657 KB)

122

Accesses

0

Citation

Detail

Sections
Recommended

/