Research and Application of Genetic Improvement for Cotton Stress Resistance

Zhao Yunlei, Wang Ning, Ge Xiaoyang, Zhang Chaojun, Yan Gentu, Wang Hongmei, Li Fuguang

PDF(763 KB)
PDF(763 KB)
Cotton Science ›› 2017, Vol. 29 ›› Issue (增刊) : 11-19. DOI: 10.11963/1002-7807.zyllfg.20170825

Research and Application of Genetic Improvement for Cotton Stress Resistance

  • Zhao Yunlei, Wang Ning, Ge Xiaoyang, Zhang Chaojun*, Yan Gentu*, Wang Hongmei*, Li Fuguang*
Author information +
History +

Abstract

Abiotic or biotic stress such as disease, drought and salinity is the main influence factors that improving and stabilizing the cotton yields. Genetic improvement for cotton stress resistance using traditional breeding strategy and modern biotechnology can realize the objects of high yield, superior quality and multiresistance and cultivate breakthrough cotton variety in cotton breeding. We reviewed the recent achievements in creating the new cotton lines for stress resistance, developing the key technologies for cotton stress resistance improvement, and cultivating the new cotton varieties, which achieved by the group of genetic improvement for cotton stress resistance in the Institute of Cotton Research of Chinese Academy of Agricultural Sciences. What's more, we presented the future scope, the purpose and the prospect of genetic improvement for cotton stress resistance in China.

Keywords

cotton / stress resistance / genetic improvement / application

Cite this article

Download Citations
Zhao Yunlei, Wang Ning, Ge Xiaoyang, Zhang Chaojun, Yan Gentu, Wang Hongmei, Li Fuguang. Research and Application of Genetic Improvement for Cotton Stress Resistance[J]. Cotton Science, 2017, 29(增刊): 11-19. https://doi.org/10.11963/1002-7807.zyllfg.20170825

References

[1] Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene in the drought and cold stress responses[J]. Current Opinion in Plant Biology, 2003, 6(5): 410-417.
[2] Zhang Lida, Yu Shuxun, Zuo Kaijing, et al. Identification of gene modules associated with drought response in rice by network-based analysis[J/OL]. PLoS ONE, 2012, 7(5): e33748 (2012-05-25) [2017-07-01]. https://doi.org/10.1371/journal.pone.0033748.
[3] Butt H I, YangZhao'en, Chen Eryong, et al. Functional characterization of cotton GaMYB62L, a Novel R2R3 TF in transgenic Arabidopsis[J/OL]. PLoS ONE, 2017, 12 (1): e0170578 (2017-01- 26) [2017-07-01]. https://doi.org/10.1371/journal.pone.0170578.
[4] Mustilli A C, Merlot S, Vavasseur A, et al. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production[J]. Plant Cell, 2002, 14(12): 3089-3099.
[5] McLoughlin F, Galvan-Ampudia C S, Julkowska M M, et al. The Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress[J]. Plant Journal, 2012, 72(3): 436-449.
[6] Liu Zhao, Ge Xiaoyang, Yang Zuoren, et al. Genome-wide identification and characterization of SnRK2 gene family in cotton (Gossypium hirsutum L.)[J/OL]. BMC Genetics, 2017, 18(1): 54 (2017-06-12) [2017-07-01]. http://dx.doi.org/10.1186/s12863-017- 0517-3.
[7] Zhu Dan, Cai Hua, Luo Xiao, et al. Over- of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance[J]. Biochemical and Biophysical Research Communications, 2012, 426(2): 273-279.
[8] Wu Xiuming, Li Fuguang, Zhang Chaojun, et al. Differential gene of cotton cultivar CCRI 24 during somatic embryogenesis[J]. Journal of Plant Physiology, 2009, 166(12): 1275- 1283.
[9] Xu Zhenzhen, Zhang Chaojun, Ge Xiaoyang, et al. Construction of a high-density linkage map and mapping quantitative trait loci for somatic embryogenesis using leaf petioles as explants in upland cotton (Gossypium hirsutum L.)[J]. Plant Cell Reports, 2015, 34(7): 1177-1187.
[10] Zhao Ge, Song Yun, Wang Caixiang, et al. Genome-wide identification and functional analysis of the TIFY gene family in response to drought in cotton[J]. Molecular Genetics and Genomics, 2016, 291(6): 2173-2187.
[11] Bello B, Zhang X, Liu C, et al. Cloning of Gossypium hirsutum sucrose non-fermenting 1-related protein kinase 2 gene (GhSnRK2) and its over in transgenic Arabidopsis esca lates drought and low temperature tolerance[J/OL]. PLoS ONE, 2014, 9(11): e112269 (2014-11-13) [2017-07-01]. https://doi.org/10.1371/journal.pone.0112269.
[12] Wang Yiqin, Liang Chenzhen, Wu Shenjie, et al. Significant improvement of cotton Verticillium wilt resistance by manipulating the of gastrodia antifungal proteins[J]. Molecular Plant, 2016, 9(10): 1436-1439.
[13] Yang Zuoren, Zhang Chaojun, Yang Xiaojie, et al. PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation[J]. New Phytologist, 2014, 203(2): 437-448.
[14] Zhang Jinfa, Fang Hui, Zhou Huiping, et al. Genetics, breeding, and marker-assisted selection for Verticillium wilt resistance in cotton[J]. Crop Science, 2014, 54: 1289-1303.
[15] 王红梅, 陈伟, 李运海, 等. 中棉所76的选育及品种特性[C]// 中国棉花学会. 中国棉花学会2010年年会论文汇编. 安阳: 中国棉花杂志社, 2010: 224.
Wang Hongmei, Chen Wei, Li Yunhai, et al. Breeding and characteristics of cotton variety CCRI 76[C]// Proceedings of the Annual Conference of the China Society of Cotton Sci-tech in 2010. Anyang: China Cotton Magazine House, 2010: 224.
[16] 郭香墨, 范术丽, 王红梅, 等. 我国棉花育种技术的创新与成就[J]. 棉花学报, 2007, 19(5): 323-330.
Guo Xiangmo, Fan Shuli, Wang Hongmei. Achivements of technical innovation about cotton genetics and breeding in China[J]. Cotton Science, 2007, 19(5): 323-330.
[17] 王宁, 黄群, 匡猛, 等. 新育种方法在中棉所49选育中的应用[J]. 中国棉花, 2015, 42(4): 25-26.
Wang Ning, Huang Qun, Kuang Meng, et al. Application of a new breeding method in the breeding of CCRI 49[J]. China cotton, 2015, 42(4): 25-26.
[18] 严根土, 匡猛, 杨杰, 等. 一种提高棉花产量和品质的育种方法: ZL2014 1 0308678.6[P]. 2015-12-30.
Yan Gentu, Kuang Meng, Yang Jie, et al. A breeding method of improving the cotton yield and quality: ZL2014 1 0308678.6[P]. 2015-12-30.
[19] 王红梅. 棉花抗黄萎病遗传及分子标记研究[M]. 武汉: 华中农业大学, 2005.
Wang Hongmei. Study on the inheritance and QTLs mapping of Verticillium wilt in cotton[M]. Wuhan: Huazhong Agricultural University, 2005.
[20] 王红梅, 张献龙, 贺道华, 等. 陆地棉对黄萎病抗性的分子标记研究[J]. 植物病理学报, 2005, 35( 4): 333-339.
Wang Hongmei, Zhang Xianlong, He Daohua, et al. Detection of DNA markers associated with resistance to Verticillium dahliae in cotton[J]. Acta Phytopathologica Sinica, 2005, 35(4): 333-339.
[21] Wang Hongmei, Lin Zhongxu, Zhang Xianlong, et al. Mapping and quantitative trait loci analysis of Verticillium wilt resistance genes in cotton[J]. Journal of Integrative Plant Biology, 2008, 50(2): 174-182.
[22] Zhao Yunlei, Wang Hongmei, Chen Wei, et al. Genetic structure, linkage disequilibrium and association mapping of Verticillium wilt resistance in elite cotton (Gossypium hirsutum L.) germplasm population[J/OL]. PLoS ONE, 2014, 9(1): e86308 (2014-01-23) [2014-01-23]. https://doi.org/10.1371/journal.pone. 0086308.
[23] 孔祥瑞, 王红梅, 陈伟, 等. 陆地棉黄萎病抗性的分子标记辅助选择效果[J]. 棉花学报, 2010, 22(6): 527-532.
Kong Xiangrui, Wang Hongmei, Chen Wei, et al. Effect of molecular marker assisted selection to Verticillium wilt resistance in upland cotton breeding[J]. Cotton Science, 2010, 22(6): 527-532.
[24] 王红梅, 赵云雷, 陈伟, 等. 一种用于陆地棉抗黄萎病性状辅助选择育种的分子标记: ZL201010294455.0[P]. 2012-11-07.
Wang Hongmei, Zhao Yunlei, Chen Wei, et al. Molecular markers for marker assisted selection in cotton breeding: ZL201010294455.0[P]. 2012-11-07. 
[25] 赵云雷, 王红梅, 陈伟, 等. 基于优异等位基因的棉花抗黄萎病性状的分子鉴定[J]. 中国农业科学, 2017, 50(2): 216-227.
Zhao Yunlei, Wang Hongmei, Chen Wei, et al. Elite alleles-based molecular detection for Verticillium wilt resistance in cotton[J]. Scientia Agricultura Sinica, 2017, 50(2): 216-227
[26] 王红梅, 赵云雷, 陈伟, 等. 预测不同棉花材料间抗黄萎病性状强弱的分子方法: ZL201410049099.4[P]. 2015-05-13.
Wang Hongmei, Zhao Yunlei, Chen Wei, et al. Molecular method of predicting Verticillium wilt resistance in cotton: ZL201410049099.4[P]. 2015-05-13.
[27] 刘少卿, 何守朴, 米拉吉古丽, 等. 不同棉花种质资源耐热性鉴定[J]. 植物遗传资源学报, 2013, 14(2): 214-221.
Liu Shaoqing, He Shoupu, Milaji Guli, et al. Identification for the thermo tolerance of different germplasm in cotton[J]. Journal of Plant Genetic Resources, 2013, 14(2): 214-221.
[28] 王飞, 匡猛, 许红霞, 等. 7个棉花品种SSR位点纯合度研究与分析[J]. 棉花学报, 2013, 25(3): 234-239.
Wang Fei, Kuang Meng, Xu Hongxia, et al. SSR locus purity research and analysis of seven cotton cultivars[J]. Cotton Science, 2013, 25(3): 234-239.
[29] 匡猛, 杨伟华, 许红霞, 等. 中国棉花主栽品种DNA指纹图谱构建及SSR标记遗传多样性分析[J]. 中国农业科学, 2011, 44(1): 20-27.
Kuang Meng, Yang Weihua, Xu Hongxia, et al. Construction of DNA fingerprinting and analysis of genetic diversity with SSR markers for cotton major cultivars in China[J]. Scientia Agricultura Sinica, 2011, 44(1): 20-27.
[30] 王宁. 转基因钾高效棉花优良株系的筛选及功能鉴定[M]. 北京: 中国农业大学, 2013.
Wang Ning. Screening and functional identification of transgenic K+-efficient lines in cotton (Gossypium hirsutum L.)[M] Beijing: China Agricultural University, 2013.
[31]  王宁, 许庆华, 杨杰, 等. 一种测定棉花钾离子吸收动力学的方法: ZL2016 1 0095913.0[P]. 2017-06-16.
Wang Ning, Xu Qinghua, Yang Jie, et al. A determination method of potassium absorption kinetics of cotton: ZL2016 1 0095913.0[P]. 2017-06-16.
[32] Wang Ning, Qi Haikun, Qiao Wenqing, et al. Cotton (Gossypium hirsutum L.) genotypes with contrasting K+/Na+ ion homeostasis: Implications for salinity tolerance[J]. Acta Physiologiae Plantarum, 2017, 39: 77.
[33] Wang Ning, Qi Haikun, Su Guilan, et al. Genotypic variations in ion homeostasis, photochemical efficiency and antioxidant capacity adjustment to salinity in cotton[J]. Soil Science and Plant Nutrition, 2016, 62(3): 240-246.
[34] 王宁, 杨杰, 黄群, 等. 盐胁迫下棉花K+和Na+离子转运的耐盐性生理机制[J]. 棉花学报, 2015, 27(3): 208-215.
Wang Ning, Yang Jie, Huang Qun, et al. Physiological salinity tolerance mechanism for transport of K+ and Na+ ions in cotton (Gossypium hirsutum L.) seedlings under salt stress[J]. Cotton Science, 2015, 27(3): 208-215.
[35] 王宁, 田晓莉, 段留生, 等. 缩节胺浸种提高棉花幼苗根系活力中的活性氧代谢[J]. 作物学报, 2014, 40(7): 1220-1226.
Wang Ning, Tian Xiaoli, Duan Liusheng, et al. Metabolism of reactive oxygen species involved in increasing root vigour of cotton seedlings by soaking seeds with mepiquat chloride[J]. Acta Agronmica Sinica, 2014, 40(7): 1220-1226.
[36] 邓福军. 新疆棉花主栽品种及其良繁体系建设现状与建议[J]. 新疆农垦科技, 2013(1): 3-4.
Deng Fujun. The major cotton cultivars in Xinjiang and present situation and advice of seed breeding system[J]. Xinjiang Agricultural Science and Technology, 2013(1): 3-4.
[37] 张国伟, 杨长琴, 刘瑞显, 等. 江苏省滨海盐碱地植棉适宜品种筛选与评价[J]. 中国棉花, 2014, 41(9): 7-12.
Zhang Guowei, Yang Changqin, Liu Ruixian, et al. Screening and evaluation of cotton varieties planted in coastal saline-alkaline area in Jiangsu province[J]. China Cotton, 2014, 41(9): 7-12.
[38] 刘鹏鹏, 陈全家, 曲延英, 等. 棉花种质资源抗旱性评价[J]. 新疆农业科学, 2014, 51(11): 1961-1969.
Liu Pengpeng, Chen Quanjia, Qu Yanying, et al. The drought resistance evaluation of cotton germplasm resources[J]. Xinjiang Agricultural Sciences, 2014, 51(11): 1961-1969.
[39] 武辉, 侯丽丽, 周艳飞, 等. 不同棉花基因型幼苗耐寒性分析及其鉴定指标筛选[J]. 中国农业科学, 2012, 45(9): 1703-1713.
Wu Hui, Hou Lili, Zhou Yanfei, et al. Analysis of chilling-tolerance and determination of chilling-tolerance evaluation indicators in cotton of different genotypes[J]. Scientia Agricultura Sinica, 2012, 45(9): 1703-1713.
[40] 苏桂兰, 金石桥, 赵淑琴, 等. 中棉所49及其亲本中棉所35农艺及产量性状的通径分析[J]. 中国棉花, 2014, 41(12): 26-29.
Su Guilan, Jin Shiqiao, Zhao Shuqin, et al. Path analysis of CCRI 49 and one of its parents, CCRI 35, between agronomic and yield-related traits of cotton[J]. China Cotton, 2014, 41(12): 26-29.
[41] 王宁, 苏桂兰, 周红, 等. 中国与美国棉花品种的铃质量与衣分差异分析[J]. 河南农业科学, 2015, 44(7): 43-47.
Wang Ning, Su Guilan, Zhou Hong, et al. Difference analysis of boll weight and lint index of cotton between Chinese and American varieties[J]. Journal of Henan Agricultural Sciences, 2015, 44(7): 43-47.
[42] 张宝娟, 颜哲, 李富强, 等. 塔里木垦区中棉49号超高产栽培技术[J]. 农业科技, 2013(7): 5-6.
Zhang Baojuan, Yan Zhe, Li Fuqiang, et al. Cultivation techniques for super-high-yield culture of CCRI 49 in Tarim reclamation area[J]. Agricultural Science and Technology, 2013(7): 5-6.
[43] 金石桥, 赵淑琴, 许乃银. 中棉所49在西北内陆棉区的稳定性与丰产性分析[J]. 中国棉花, 2014, 41(5): 22-25.
Jin Shiqiao, Zhao Shuqin, Xu Naiyin. Analysis of the stability and high yielding ability of CCRI 49 in the Northwest Inland Cotton Planting Region[J]. China Cotton, 2014, 41(5): 22-25.
[44] 吐拉拉卡斯木. 中棉所49特征特性及栽培要点[J]. 新疆农业科技, 2008(4): 38.
Tulalakasimu. Characteristics and cultivation gist of CCRI 49[J]. Xinjiang Agricultural Science and Technology, 2008(4): 38.
[45] 严根土, 刘全义, 张裕繁, 等. 耐盐棉花新品种中棉所44[J]. 中国棉花, 2004, 31(10): 21.
Yan Gentu, Liu Quanyi, Zhang Yufan, et al. A new variety of salt tolerant cotton, CCRI 44[J]. China Cotton, 2004, 31(10): 21.
[46] 王红梅, 陈伟, 赵云雷, 等. 丰产抗虫常规棉新品种——中棉所89[J]. 中国棉花, 2014, 41(10): 26-27.
Wang Hongmei, Chen Wei, Zhao Yunlei, et al. Conventional cotton variety for good harvest―CCRI 89[J]. China Cotton, 2014, 41(10): 26-27.
[47] 王宁, 杨杰, 苏桂兰, 等. 中棉所49基础种大群体自交纯化提高技术[J]. 河北农业科学, 2015, 19(4): 77-81.
Wang Ning, Yang Jie, Su Guilan, et al. Foundation seed screening and purification of CCRI 49[J]. Journal of Hebei Agricultural Sciences, 2015, 19(4): 77-81.
[48] 李汉华, 严根土. 降低中棉所49棉子破碎率的几项措施[J]. 中国棉花, 2011, 38(2): 33-34.
Li Hanhua, Yan Gentu. Several measures to reduce the percentage of CCRI 49 cottonseed breakage[J]. China Cotton, 2011, 38(2): 33-34.
[49] 王延琴, 阿扎提·皮尔多斯. 中棉所49棉花全程标准体系指南[M]. 北京: 中国标准出版社, 2016: 5-6.
Wang Yanqin, Azhati Pierduosi. The guide of the whole standard system of CCRI 49[M]. Beijing: China Standards Press, 2016: 5-6.  
PDF(763 KB)

339

Accesses

0

Citation

Detail

Sections
Recommended

/