|
棉 花 学 报 Cotton Science 2005,17(1):47-55
中美几个棉花品种育种应用价值研究
McCARTY-Jack C1*, WU Ji-xiang2, JENKINS Johnie N1,郭香墨3
(1. USDA-ARS, Crop Science Research Laboratory, Mississippi State, MS, USA ;
2. Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, USA; 3. 中国农业科学院棉花研究所,农业部棉花遗传改良重点开放实验室,安阳 455112)
摘要:用3个美国陆地棉品种为母本与2个中国品种配制6个杂交组合。5个亲本与其6个杂交组合F2和F3种植在美国密西西比州立大学农业试验站。利用加性-显性-加×加互作遗传模型(ADAA)进行数据分析。结果表明,除了加性和显性效应外,加×加互作效应控制大多数农艺性状和纤维性状。两个中国品种均可用于纤维麦克隆值的改良。品种CR110及Deltapine 90 (DP90) 在纤维长度和强度方面具有较好的一般配合力。与品种DP90的杂交组合可以在较晚世代用于产量的改良。杂交组合Stoneville 474 (ST474)×CR1 10可用于在早期提高皮棉产量。除 ST474×CR110 之外,其它各组合均具有产量改良的潜力。组合Sure-Grow 747 (SG747)×86-1 在早期和晚期均比其它组合有较高的纤维强度。考虑到皮棉和纤维品质的基因型值,组合SG747×86-1可用于提高早期和晚期产量的改良且有好的纤维品质。
关键词:棉花;遗传模型;遗传效应;遗传改良
中图分类号:S562.035 文献标识码:A
文章编号:1002-7807(2005)01-0047-09
[全文,981KB]
References:
[1] VAN ESBROECK G, Bowman D T. Cotton gemplasm diversity and its importance to cultivar development[J]. J Cotton Science,1998(2): 121-129.
[2] MEREDITH W R Jr. Quantitative genetics[A]. KOHEL R J, Lewis C F. Cotton[C]. Madison, WI : Am Society of Agronomy, 1984.131-150.
[3] MEREDITH W R Jr. Yield and fiber-quality potential for second generation hybrids[J]. Crop Sci, 1990,30:1045-1048.
[4] TANG B, Jenkins J N, McCarty J C, et al. F2 hybrids of host plant germplasm and cotton cultivars:I. Heterosis and combining ability for lint yield and yield components[J]. Crop Sci, 1993a, 33:700-705.
[5] TANG B, Jenkins J N, McCarty J C, et al. F2 hybrids of host plant germplasm and cotton cultivars:II. Heterosis and combining ability for fiber properties[J]. Crop Sci, 1993b, 33:706-710.
[6] WU J, Zhu J, Xu F,et al. Analysis of genetic effect 5 ( environment interactions for yield traits in upland cotton[J]. Heredita, 1995,17(5):1-4.
[7] SHOEMAKER D B. Genetic analyses of agronomic traits of selected American and Australian cotton genotypes and their F2 hybrids[D]. Mississippi State Univ. 2000.
[8] CHEATHAM C L. Genetics and combining ability of yield and fiber properties associated with selected American and Australian cotton genotypes[D]. Mississippi State Univ. 2001.
[9] TANG B, Jenkins J N, Watson C E, et al. Evaluation of genetic variances, heritabilities, and correlations for yield and fiber traits among cotton F2 hybrid populations[J]. Euphytica,1996,91:315-322.
[10] McCARTY J C, Jenkins J N Jr, Zhu J. Introgression of day-neutral genes in primitive cotton accessions: I. Genetic variances and correlations[J]. Crop Sci, 1998,38:1425-1428.
[11] CHEATHAM C L, Jenkins J N, McCarty J C Jr, et al. Genetic variance and combining ability of crosses of American cultivars, Australian cultivars, and wild cottons[J]. J Cotton Science, 2003,7: 16-22.
[12] DOEBLEY J, Stec A, Gustus C. Teosinte branchedl and the origin of maize: Evidence for epistasis and evolution of dominance[J]. Genetics,1995, 141:333-346.
[13] LARK K G, Chase K, Adler F, et al. Interaction between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another[J]. Proc Natl Acad Sci USA, 1995,92:4656-4660.
[14] LI Z K, Prison S R M, Park W D, et al. Epistasis for three grain yield components in rice (Oryza sativa L.)[J]. Genetics,1997,145:453-465.
[15] ESHED Y, Zamir D. Less-than-additive interaction of QTL in tomato[J]. Genetics,1996,143:1807-1817.
[16] CAO G, Zhu J, He C, et al. Impact of epistasis and QTL×environment interaction on developmental behavior of plant height in rice (Oryza sativa L.)[J]. Theor Appl Genet, 2001,103:153-160.
[17] LIAO C Y, Wu P, Hu B, et al. Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L.) panicle number[J]. Theor Appl Genet, 2001, 103:104-111.
[18] LEE S H, Park K Y, Lee H S,et al. Genetic mapping of QTLs conditioning soybean sprout yield and quality[J]. Theor Appl Genet,2001,103: 702-709.
[19] WU JIXIANG. Genetic variation, conditional analysis, and QTL mapping for agronomic and fiber traits in upland cotton[D]. Mississippi State Univ. 2003.
[20] ZHU J. General genetic models and new analysis methods for quantitative traits[J]. J of Zhejiang Agricultural Univ, 1994, 20(6):551-559.
[21] McCARTY J C Jr, Jenkins J N, Wu J. Primitive accession germplasm by cultivar crosses as sources for cotton improvement I: Phenotypic values and variance components[J]. Crop Sci, 2004, 44: 1226-1230.
[22] McCARTY J C Jr, Jenkins J N, Wu J. Primitive accession germplasm by cultivar
crosses as sources for cotton improvement II: Genetic effects and genotype values[J]. Crop Sci, 2004,44: 1231-1235.
[23] XU Z C, Zhu J. A new approach for predicting heterosis based on an additive, dominance and additive × additive model with environment interaction[J]. Heredity, 1999,82: 510-517.
[24] MILLER R G. The Jackknife- a review[J]. Biometrika, 1974,61:1-15.
[25] ZHU J. Analytical methods for genetic models[M]. Bejing, China: Press of China Agriculture, 1998.
[26] McCARTY J C Jr, Jenkins J N, Wu J. Use of primitive accessions of cotton as sources of genes for improving yield components and fiber properties[J]. Mississippi Agric and Forestry Exp Stn Bull, 2003:1130.
[27] SAHA S, Wu J, Jenkins J N, et al. Association of agronomic and fiber traits with specific Pima 3-79 chromosomes in a TM-1 Background[J]. J Cotton Sci, 2004 (in press).
|
|