棉花钾吸收动力学的初步研究和应用 张志勇, 王刚卫, 田晓莉, , 李召虎, 段留生, 瞿志席, 何钟佩

(中国农业大学农学与生物技术学院,北京 100094)

摘要:研究了影响棉花钾吸收动力学参数的因素,初步确定了钾吸收动力学方法在棉花上应用的条件,比较了转基因抗虫棉新棉 99B 和常规棉中棉所 35 苗期的钾吸收特性。结果表明,棉花钾吸收动力学参数受到苗龄、耗竭液中起始钾浓度及培养液中钾浓度的显著影响,在苗龄较小(3~4 叶苗与 4~5 叶苗相比)、耗竭液中起始钾浓度较高(0.35 与 0.2 mmol·L¹相比)、培养液中钾浓度较高(2.0 与 0.5 mmol·L¹相比)的情况下, K_m 、 C_{min} 均比较高,而 I_{max} 在前两种条件下较高、在后一种条件下较低。在 5~6 叶期,新棉 99B 的 I_{max} 显著降低于中棉所 35,而 K_m 、 C_{min} 显著高于后者(培养液中 K^+ 为 0.5 mmol·L¹),耗竭液中起始 K^+ 为 0.2 mmol·L¹),说明新棉 99B 吸收有限钾的能力低于中棉所 35。

关键词:棉花;钾;吸收动力学

中图分类号: S562.062 文献标识码: A

文章编号:1002-7807(2005)03-0165-06

Preliminary Study of K⁺ Uptake Kinetics of Cotton (Gossypium hirsutum L.) and its Application

ZHANG Zhi-yong, WANG Gang-wei, TIAN Xiao-li*, LI Zhao-hu, DUAN Liu-sheng, ZHAI Zhi-xi, HE Zhong-pei

(College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094 China)

Abstract: It has been a main problem in cotton production that transgenic insect-resistant cotton is prone to premature senescence induced by K^+ deficiency, which makes it necessary to study K^+ uptake characteristics and, on the basis of it, to screen cotton cultivars with high K^+ uptake efficiency. This experiment studied the factors influencing K^+ uptake kinetic parameters of cotton, preliminarily identified the conditions of K^+ uptake kinetic applied to cotton, and compared the K^+ uptake characteristics of transgenic insect-resistant cotton cultivar, DP99B, and conventional cotton cultivar, CCRI 35, at seedling stage. The results showed that K^+ uptake kinetic parameters were significantly affected by seedling stage, initial K^+ concentration in depleting solution and K^+ concentration in culturing solution. Higher K_m and C_{min} resulted from younger seedling (3~4 vs. 4~5 leaf stage), higher initial K^+ concentration in culturing solution (2.0 vs. 0.5 mmol • L^{-1}), but higher I_{max} was produced under the two former conditions, and lower I_{max} came into being under the last situation. Compared with CCRI 35, DP99B had significantly lower I_{max} and higher K_m and C_{min} (0.5 mmol • L^{-1} K^+ in culturing solution and 0.2 mmol • L^{-1} initial K^+ in depleting solution) at 5~6 leaf stage, which indicated that the ability of DP99B to uptake limited K^+ was weaker than that of CCRI 35.

Key words: cotton; K+; uptake kinetics

CIC number: S562. 062

Document Code: A

Article ID: 1002-7807(2005)03-0165-06

1 Introduction

Since enzymatic reaction kinetics, by using in vitro root and radio-labeled rubidium [1] and/ or in vivo root and non-radio-labeled potassium, named 'ion depletion method' [2], was used to study potassium uptake of plant roots, a lot of studies have been carried out, including differences of intra-species and inter-species in K⁺ uptake parameters I_{max} (K⁺ maximum uptake rate), K_m (K⁺ concentration in solution where K uptake rate was half of I_{max}) and C_{min} (where K influx equaled efflux)[3], effects of seedling age[4], internal K+ content of seedling[5,6] and external environments^[7] etc. on I_{max} , K_m and Cmin. I_{max} represented maximum absorbing rate, which mattered when K+ supply was abundant. Km represented competitive capacity of plant for limited K⁺ source, which meant that the lower K_m was, the stronger the competitiveness for K⁺ was. C_{min} was the minimum K⁺ concentration below which K+ couldn't be absorbed by root. When K⁺ available in medium was limited, K_m and Cmin greatly mattered. It has showed that I_{max} , K_{m} and C_{min} varied in a wide range among varieties and species, and these K+ uptake kinetic parameters could be effective tools to select crop varieties with high potassium efficiency for breeder and growers [8].

Cotton had less root density than other crops [9], which determined its relatively low K^+ uptake efficiency. Recently, premature senescence induced by potassium deficiency frequently happened to cotton, especially to transgenic insect-resistant cotton. Therefore, it was necessary to study the mechanisms of K^+ uptake of cotton. But up to now, few studies of K^+ uptake kinetics of cotton were found.

The objectives of this experiment were to investigate the effects of seedling age, initial K⁺ concentration in the depleting solution and K⁺ concentration in culturing solution, on the K⁺ uptake kinetic parameters, based on that, to analyze the differences of K⁺ uptake kinetic charac-

teristics between conventional variety CCRI 35 and transgenic insect-resistant cotton DP99B and to identify the conditions of K⁺ uptake kinetic applied to cotton.

2 Materials and methods

2. 1 Solution culture

The experiments were conducted in a growth chamber at 30°C day/25 °C night, 10 h light/14 h dark condition using transgenic insectresistant cotton DP99B and conventional variety CCRI 35. Photo-radiation at the canopy was 450 μmol • m⁻² • s⁻¹. The seeds were surface sterilized by 9% H₂O₂, germinated and emerged in 1/4 modified Hoagland's solution described below without K+. Five-day-old seedlings were carefully transferred into $35 \times 27 \times 12$ cm³ pots rounded with aluminum foil. The pots were loaded with a modified Hoagland's solution, which contained 2. 5 mmol • L-1 Ca (NO₃)₂, 1 mmol • L-1 MgSO₄, 0, 5 mmol • L-1 (NH₄) H_2PO_4 , 2×10^{-4} mmol • L^{-1} CuSO₄, 1×10^{-3} mmol • L-1 ZnSO₄, 0. 1 mmol • L-1 EDTA Fe Na, 2×10^{-2} mmol • L⁻¹ H₃BO₃, 5×10^{-6} mmol • $L^{-1}(NH_4)_6 Mo_7 O_{24}$, 1×10^{-3} mmol • L^{-1} MnSO₄ and varied KC1 for different K+ treatments. All solutions were changed twice a week and de-ionized water was added daily to replace the water lost by evapo-transpiration. The pH was maintained close to 6.5 by adding H2SO4. Air was bubbled into the nutrient solution by air pump to provide O2 and mix solution homogeneously.

2. 2 Determination of K^+ uptake kinetic parameters and K^+ content in root

K⁺ uptake kinetic parameters were determined by using ion-depletion method^[2]. Three uniform seedlings were selected as a unit, and put into 500 ml beakers loaded with 300 ml above described nutrient solution without K⁺, which was hereby defined as K⁺ starvation of seedlings. After 48 hours, the seedlings were taken out from the solution. Their roots were

washed with 0.5 mmol • L-1 CaSO4 three times. Then the seedlings were again put into the beakers with 300 ml uptake solution (hereon called depleting solution) comprised of different initial KCl content and 0.5 mmol • L-1 CaSO4, where Ca2+ can guarantee integrity of membranes and minimize ions efflux^[10]. At $10 \sim 30$ min intervals, 1.5 ml solution was taken out. At intervals of 30 minutes, 5 ml ionized water was added against evapo-transpiration. After some duration, the procedure was stopped. Seedlings were taken out and weighed for fresh root weight. Root was oven-dried at 75°C, grounded, and K⁺ was extracted from root with 1 mmol • L-1 ammonium acetate (pH = 7.0). Extracted K^+ of root and K+ in taken-out solution were determined by atomic absorption spectroscopy(Varian SpectrAA). During depletion, K⁺ concentration in solution decreased as a binomial function of time, so I_{max} , K_m and C_{min} were calculated according to the following formulae:

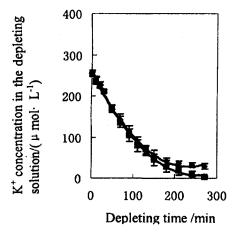
Conc. =
$$A * t^2 + B * t + C$$

I = -d Conc. /d t=-2 * $A * t - B$
 $I_{max} = |B| * V/FRW$
 $K_m = B^2/16A - B^2/4A + C$
 $C_{min} = B^2/4A - B^2/2A + C$

Note: Conc.: K^+ concentration in the depleting solution; t: time; A, B: coefficients; C: constant; I: K^+ influx rate; I_{max} : maximum influx rate; K_m , C_{min} : K^+ concentration in the depleting solution where I was a half of I_{max} and tended to zero, respectively; V: the volume of the depleting solution; FRW: fresh root weight.

2.3 Experiment designs and statistical analysis

In this experiment, effects of seedling age (sub-experiment 1), K⁺ concentration in culturing solution (sub-experiment 2) and initial K⁺ concentration in depleting solution (sub-experiment 3) on parameters of K⁺ uptake kinetics were investigated. Further, K⁺ uptake kinetic parameters of CCRI 35 and DP99B were compared (sub-experiment 4). At seedling age, K⁺ concentration in culturing solution and initial K⁺ concentration in depleting solution of each sub-experiment were detailed in table 1.


A completely randomized design with three

replications was used for each of four experiments. All data were subject to ANOVA test and means were compared using the Fisher's protected LSD (P < 0.05).

3 Results

3. 1 Factors influencing K^+ uptake kinetic parameters

3. 1. 1 Seedling age. When seedlings growing from 3-4 leaf to 4-5 leaf, fresh root weight increased by 70. 8%, K^+ concentration in root decreased by 19. 1%, and I_{max} , K_m and C_{min} decreased by 41. 4%, 17. 7% and 72. 7%, respectively. The decrease of K_m and C_{min} indicated the competitive uptake on limited K^+ , which should result mainly from the decrease of K^+ concentration in root (Table 2 and Figure 1).

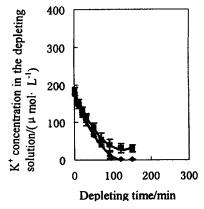
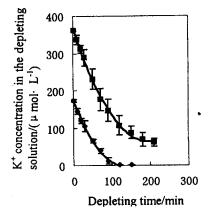

Diamond symbol (): seedlings at 3-4 leaf stage; Foursquare symbol (): The seedlings at 4-5 leaf stage. (Error bars signified ± S. E of means. The same for the following figures)

Fig. 1 K⁺ uptake kinetics curve of seedlings at different growth stages.

3.1.2 K^+ concentration in the culturing solution. Seedlings with 2 mmol • L^{-1} K^+ had significantly 68% higher fresh root weight and 191. 8% higher K^+ concentration in root, on the other hand, had 40% lower I_{max} and 55. 9% higher K_m and 896% higher C_{min} , compared with seedlings cultured with 0.5 mmol • L^{-1} K^+ in solution. This indicated that the K^+ uptake ability reduced as a result of K^+ concentration increment in root (Table 2 and Figure 2), which was accordant with the above result.

Table 1 Seedling age, K ⁺ concentration in culturing solution and initial K ⁺	concentration in
depleting solution of each sub-experiment	

	seedling age	K ⁺ in culturing solution	initial K ⁺ in depleting solution	
	true leaf	/(mmol • L ⁻¹)	/(mmol • L ⁻¹)	
sub-experiment 1	3~4 and 4~5	0.5	0, 25	
sub-experiment 2	5~6	0.5 and 2.0	0.20	
sub-experiment 3	5~6	0.5	0.20 and 0.35	
sub-experiment 4	5~6	0.5	0.20	



Diamond symbol (\spadesuit): seedlings cultured with 0. 5 mmol \cdot $L^{\text{-}1}$ K^{+} ; Foursquare symbol (\blacksquare): The seedling cultured with 2 mmol \cdot $L^{\text{-}1}$ K^{+}

Fig. 2 K⁺ uptake kinetics curve of seedlings cultured with different K⁺ concentration in culturing solution

3. 1. 3 Initial K^+ concentrations in depleting solution. With seedlings cultured in same conditions, higher initial K^+ concentration (0. 35 vs. 0. 2 mmol • L^- 1) during depletion made K^+ concentration in root, I_{max} , K_m and C_{min} elevated significantly by 84. 3%, 20. 0%, 24. 4% and

255.6%, respectively. This suggested that higher exterior K^+ raised the initial rate and accumulation of K^+ influx into root during depletion, which further inhibited the K^+ uptake, and produced higher K_m and C_{min} (Table 2 and Figure 3).

Diamond symbol(\spadesuit): 0. 2mmol • L⁻¹ K⁺; Foursquare symbol(\blacksquare): 0. 35mmol • L⁻¹ K⁺

Fig. 3 K⁺ uptake kinetics curve of seedlings with different initial K⁺ concentration in depleting solution

Table 2 Effects of seedling stage, K^+ concentration in culturing solution and initial K^+ concentration in depleting solution on K^+ uptake kinetic characteristics; K^+ concentration in dry root and fresh root weight

factors of affecting K ⁺ uptake kinetics	K ⁺ uptake kinetics parameters			K ⁺ content	Fresh root
	I _{max} /μmol • (g • min) ⁻¹ (FR	K _m (μmol • L ⁻¹)	C_{\min} /(μ mol • L ⁻¹)	in dry root /%	weight /g
seedling age					
3-4 leaf	0.29A	85. 25 A	26.85A	3.03A	0.79B
4-5 leaf	0.17B	70.17B	7.32B	2.45B	1.35A
K+ concentration in					
culturing solution					
0.5 mmol • L-1	0.10A	40.32B	2.50B	1.47B	2.49B
2.0 mmol • L-1	0.06B	62.86A	24.90A	4.29A	4.20A
initial K+ concentration					
in depleting solution					
0. 20 mmol • L ⁻¹	0.10B	40.32B	2.50B	1.47B	2.49A
0. 35 mmol • L ⁻¹	0.12A	138. 72A	66.41A	2.71A	2.56A

Note: Values in each column followed the upper-case letters for comparisons within factors affecting K^+ uptake kinetics at P<0.05 by LSD test.

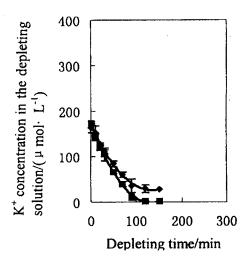

varieties //	K+ uptake kinetics parameters			K ⁺ content in dry	fresh root
	I _{max} (FW)	K _m	C_{min}	root	weight
	/μmol • (g • min ⁻¹)	/(µmol • L-1)	$/(\mu \text{mol} \cdot L^{-1})$	/ %	/g
CCRI 35	0.10A	40. 32B	2.50B	1.47B	2.49A
DP99B	0.07B	61.72A	27.50A	1.96A	2.92A

Table 3 Comparisons of K^+ uptake kinetic characteristics, fresh root weight and K^+ concentration in root between two cotton cultivars

Note: Values in each column followed the upper-case letters for comparison between two cultivars at P<0.05by LSD test.

3. 2 Comparisons of K⁺ uptake kinetic characteristics between CCRI 35 and DP99B

Compared with transgenic insect-resistant cotton DP99B, conventional variety CCRI 35 had similar fresh root weight, 25% lower K⁺ concentration in root, but significantly 42.8% higher I_{max} and 34.7% lower K_m and 90.9% lower C_{min}. As mentioned above, lower K⁺ concentration in root maybe contributed to the higher I_{max} and lower K_m and lower C_{min} (Table 3 and Figure 4). Furthermore, this result implied that conventional variety CCRI 35 could use limited K⁺ more efficiently than transgenic insect-resistant cotton DP99B.

Diamond symbol(♠): DP99B; Foursquare symbol(■): CCRI35

Fig. 4: K⁺ uptake kinetics curve of cotton cultivars, DP99B and CCRI 35

4 Discussions

4. 1 Conditions of K^+ uptake kinetics applied to cotton

In order to obtain desirable kinetic curve, it was necessary to get the absorption rate varied grad-

ually from rapidly to slowly. Factors influencing K^+ uptake kinetic should contain seedling age, seedling number as a unit, volume and initial K^+ concentration of depleting solution, K^+ concentration in culturing solution (this resulted in K^+ concentration variation in root) and certain starvation time (this guaranteed I_{max} available). The results of this experiment indicated that relatively appropriate K^+ uptake kinetic curves of cotton was obtained with 3-6 leaf seedling under conditions as follows: $450 \ \mu mol \cdot m^{-2} \cdot s^{-1}$ of photo-radiation, 0.5 or 2 mmol $\cdot L^{-1} \cdot K^+$ of culturing solution, 48 hours of seedlings starvation, 3 plants as a unit, 300 ml K^+ depleting solution with 0, 2, 0, 25 or 0, 35 mmol $\cdot L^{-1}$ of initial K^+ .

 K^+ concentration in root decreased with seedling age, which might be a dilution of rapid root growth, a growth from 0.79 g • plant 1 at $3{\sim}4$ leaf stage to 1.35 g • plant 1 at $4{\sim}5$ leaf stage. But the difference of K^+ concentration in root between two seedling stages couldn't completely account for the bigger differences in I_{max} , K_m and C_{min} . They all significantly decreased with seedling growing, which didn't completely accord with the results from Peng [4], who suggested that there was a small reduction in I_{max} and a slow ascension in K_m with plant age increasing.

There was a positive correlation between increment of K^+ influx and reduction of K^+ concentration in roots $^{[5,6]}$. To some extent, internal K^+ of root increased, K_m increased $^{[6]}$. In this experiment, while K^+ concentration in culturing solution increased from 0.5 mmol • L^- 1 to 2 mmol • L^- 1, the fresh root weight and K^+ concentration in root of seedlings got significantly enhanced, which led to significant increment of K_m and C_{min} , and significant decrease of I_{max} . It was manifested that K^+ uptake

efficiency was regulated strongly by feed back of internal K⁺ of root.

With initial K^+ enhanced from 0. 2 mmol • L^1 to 0. 35 mmol • L^1 during depletion, I_{max} was improved significantly, while K_m and C_{min} were increased significantly and strongly. Those changes may attribute partly to significant disparity of K^+ concentration among seedlings in different initial K^+ concentrations during depletion, which provided another evidence for the feed back regulation of internal K^+ of root on K^+ uptake,

Considering the K^+ concentration in natural soil solution and obvious effects of higher initial K^+ in depleting solution on K_m and C_{min} , it may be appropriate to select cotton varieties with high potassium efficiency under the following conditions: $5\sim 6$ leaf seedlings, 0.5mmol • L^{-1} K^+ in culturing solution and 0.2 mmol • L^{-1} initial K^+ in depleting solution.

4. 2 Comparison of K⁺ uptake kinetic characteristics between CCRI 35 and DP99B

Taking seedlings grown in Hoagland's solution with 0.5 mmol • L-1 K+ for comparisons, great gaps existed between CCRI 35 and DP99B in K⁺ uptake kinetic characteristics. Compared with Bt cotton DP99B, conventional variety CCRI 35, depending on its significantly lower K_m and C_{min} , might have a competitive edge on using limited K+ source. But it is yet testified if susceptibility of premature senescence of DP99B was highly related to low K+ uptake efficiency in seedling stage. Although high internal K⁺ of root could affect I_{max}, K_m and C_{min}, 0.49% increment of K⁺ concentration in root from 1. 47% (for CCRI 35) to 1.96% (for DP99B) could not sufficiently account for bigger disparity of K_m and C_{min} between two varieties, which resulted from the facts that K+ uptake dynamic of different varieties may vary with seedling age, and appropriate initial K+ concentration during depletion for different varieties may be distinct.

4. 3 Evaluation and prospect of K^+ uptake kinetics suitable to cotton

K+ uptake kinetics by root has played a great

role in selecting high K^+ efficient species and varieties^[8], but few applications on cotton were found. Above results showed that K^+ uptake kinetics maybe suitable to select cotton varieties with high potassium efficiency, but it needs to investigate whether K^+ uptake efficiency difference among cotton varieties in seedling stage could be applied to other growth and development stages, especially to maturation stage.

References

- [1] EPSTEIN E, C E Hagex. A kinetics study of the absorption of alkali cations by barley roots [J]. Plant Physiology, 1951, 457-474.
- [2] CLAASSEN N, S A Barber. A method for characterizing the relation between nutrient concentration and flux into roots of intact plants [J]. Plant Physiology, 1974, 54: 564-568.
- [3] GLASS A D M, J E Perley. Varietal differences in potassium uptake by barley [J]. Plant Physiology, 1980, 65;160-164.
- [4] PENG K Q, D J Hu. A kinetic study of potassium uptake by alligator alternanthera[J]. Journal of Plant Nutrition, 1987, 10(9-16): 1983-1990.
- [5] GLASS A. The regulation of potassium absorption in barley roots [J]. Plant Physiology, 1975, 56: 377-380.
- [6] CLAASSEN N, S A Barber. Potassium influx characteristics of corn roots and interaction with N, P, Ca and Mg influx [J]. Agronomy Journal, 1977, 69: 861-864.
- [7] ROSEN C J, R M Carlson. Potassium uptake characteristics of prunus rootstocks: influence of solution Ca/Mg ratios and solution nickel [J]. Journal of Plant Nutrition, 1984,7(6):865-885.
- [8]CHEN J J, W H Gabelman Morphological and physiological characteristics of tomato roots associated with potassium-acquisition efficiency [J]. Scientia Horticulturae, 2000, 83: 213-225.
- [9] PATTERSON S, P Jensen. Variation among species and varieties in uptake and utilization of potassium [J]. Plant and Soil, 1983, 72: 231-237.
- [10] JENSEN P, L Erdei, I M Moller. K⁺ uptake in plant roots: Experimental approach and influx models[J]. Physiol Plantarum, 1987, 70: 743-748.