棉花学报 ›› 2019, Vol. 31 ›› Issue (1): 12-22.doi: 10.11963/1002-7807.qzyfsl.20190115
曲朝阳1(),贾晓昀2,马启峰1,王寒涛1,魏恒玲1,范术丽1,*(
)
收稿日期:
2018-03-15
发布日期:
2019-01-15
通讯作者:
范术丽
E-mail:quzhaoyangcaas@163.com;fsl427@126.com
作者简介:
曲朝阳(1991―),男,硕士研究生, 基金资助:
Qu Zhaoyang1(),Jia Xiaoyun2,Ma Qifeng1,Wang Hantao1,Wei Hengling1,Fan Shuli1,*(
)
Received:
2018-03-15
Published:
2019-01-15
Contact:
Fan Shuli
E-mail:quzhaoyangcaas@163.com;fsl427@126.com
摘要:
【目的】铃重是构成棉花产量的基本因子之一。本研究旨在定位铃重QTL(Quantitative trait loci),为分析铃重遗传组成提供参考。【方法】以中棉所36和海陆渐渗系G2005组配的137个RILs(Recombinant inbred lines)家系为作图群体,利用RAD-seq(Restriction-site associated DNA sequencing)技术及SSR(Simple sequence repeat)标记,构建遗传连锁图谱,并对5个环境下的铃重进行QTL分析。【结果】构建了包含26个连锁群、6 434个标记、总长为 4 071.98 cM、标记间平均距离为0.63 cM的遗传图谱。采用WinQTLCart 2.5软件的复合区间作图法进行QTL定位,共得到32个铃重QTL,分布于15条染色体,单个位点解释的表型变异率为4.46%~15.84%;qBW-A4-1、qBW-A4-2、qBW-A5-2、qBW-D9-1和qBW-D9-2能够在2个环境中检测到,解释5.07%~15.84%的表型变异率。【结论】本研究定位的主效QTL可用于分析铃重遗传机理。
曲朝阳,贾晓昀,马启峰,王寒涛,魏恒玲,范术丽. 棉花重组自交系铃重性状的QTL定位[J]. 棉花学报, 2019, 31(1): 12-22.
Qu Zhaoyang,Jia Xiaoyun,Ma Qifeng,Wang Hantao,Wei Hengling,Fan Shuli. QTL Mapping of Boll Weight Trait Based on Recombinant Inbred Lines in Gossypium hirsutum L.[J]. Cotton Science, 2019, 31(1): 12-22.
表1
5个环境下重组自交系群体及亲本的铃重表现"
环境 Environment | G2005 /g | CCRI 36 /g | 重组自交系 RILs population | |||||
最小值 Minimum /g | 最大值 Maximum /g | 平均值 Average /g | 方差 Variance | 偏度 Skewness | 峰度 Kurtosis | |||
2011AY | 3.87* | 3.13 | 2.43 | 5.52 | 4.15 | 0.26 | -0.33 | 0.59 |
2012AY | 4.86** | 3.96 | 2.84 | 5.81 | 4.48 | 0.22 | -0.23 | 0.82 |
2013AY | 5.67* | 5.17 | 3.84 | 6.07 | 5.01 | 0.22 | -0.17 | -0.07 |
2014AY | 6.01** | 4.67 | 3.28 | 6.41 | 5.25 | 0.28 | -0.76 | 1.03 |
2015AY | 5.25* | 4.37 | 2.87 | 6.22 | 4.68 | 0.36 | -0.33 | -0.06 |
表2
遗传图谱详细信息统计"
染色体 Chromosomes | 总标记数 No. of markers | SNP 标记数 No. of SNP makers | SSR 标记数 No. of SSR markers | 图距 Distance /cM | 平均间距 Average interval /cM | 最大间距 Maximum interval /cM |
A1 | 190 | 184 | 6 | 133.20 | 0.70 | 10.61 |
A2 | 218 | 216 | 2 | 163.92 | 0.76 | 7.25 |
A3 | 218 | 212 | 6 | 136.23 | 0.63 | 4.38 |
A4 | 169 | 169 | 0 | 160.85 | 0.95 | 7.19 |
A5 | 325 | 325 | 0 | 152.42 | 0.47 | 4.41 |
A6 | 411 | 399 | 12 | 147.89 | 0.36 | 7.19 |
A7 | 305 | 305 | 0 | 152.55 | 0.50 | 4.38 |
A8 | 386 | 386 | 0 | 175.59 | 0.45 | 6.65 |
A9 | 281 | 261 | 20 | 196.04 | 0.70 | 9.15 |
A10 | 258 | 258 | 0 | 146.32 | 0.57 | 4.89 |
A11 | 357 | 349 | 8 | 174.97 | 0.49 | 9.69 |
A12 | 157 | 154 | 3 | 160.88 | 1.03 | 15.37 |
A13 | 325 | 318 | 7 | 147.25 | 0.45 | 5.76 |
A 亚组 A subgenome | 3 600 | 3 536 | 64 | 2 048.11 | 0.57 | 15.37 |
D1 | 257 | 240 | 17 | 152.01 | 0.59 | 9.25 |
D2 | 268 | 258 | 10 | 177.07 | 0.66 | 9.31 |
D3 | 179 | 179 | 0 | 143.18 | 0.80 | 6.65 |
D4 | 178 | 178 | 0 | 98.98 | 0.56 | 11.19 |
D5 | 252 | 241 | 11 | 190.57 | 0.76 | 13.70 |
D6 | 258 | 241 | 17 | 143.48 | 0.56 | 13.76 |
D7 | 208 | 208 | 0 | 157.77 | 0.76 | 5.48 |
D8 | 257 | 257 | 0 | 143.18 | 0.56 | 5.30 |
D9 | 201 | 189 | 12 | 153.85 | 0.77 | 10.32 |
D10 | 198 | 193 | 5 | 155.65 | 0.79 | 18.24 |
D11 | 112 | 109 | 3 | 174.54 | 1.57 | 8.07 |
D12 | 229 | 229 | 0 | 167.80 | 0.73 | 13.15 |
D13 | 237 | 237 | 0 | 165.79 | 0.70 | 10.72 |
D 亚组 D subgenome | 2 834 | 2 759 | 75 | 2 023.87 | 0.71 | 18.24 |
总计 Total | 6 434 | 6 295 | 139 | 4 071.98 | 0.63 | 18.24 |
表3
5个环境中检测到的铃重QTLs"
QTL | 环境 Environment | 标记区间 Maker interval | 位置 Position /cM | LOD | 加性效应 Additive effect | 贡献率 Phenotypic variation /% |
qBW-A3-1 | 12AY | Marker4598-MGHES66 | 19.51 | 3.3 | -0.11 | 5.53 |
qBW-A3-2 | 12AY | MGHES66-Marker4593 | 27.71 | 3.0 | -0.11 | 5.18 |
qBW-A4-1 | 13AY | Marker5055-Marker5072 | 90.61 | 5.6 | -0.15 | 9.79 |
15AY | Marker5052-Marker5072 | 90.61 | 2.6 | -0.14 | 5.07 | |
qBW-A4-2 | 11AY | Marker5081-Marker5088 | 104.71 | 7.4 | -0.29 | 15.83 |
12AY | Marker5077-Marker5087 | 101.91 | 8.0 | -0.20 | 15.84 | |
qBW-A4-3 | 12AY | Marker5088-Marker5093 | 109.61 | 4.7 | -0.15 | 9.17 |
qBW-A5-1 | 11AY | Marker5327-Marker5310 | 138.91 | 2.9 | -0.14 | 6.45 |
qBW-A5-2 | 11AY | Marker5290-Marker5280 | 145.31 | 3.5 | -0.15 | 7.73 |
12AY | Marker5290-Marker5280 | 145.71 | 3.6 | -0.12 | 6.32 | |
qBW-A7-1 | 12AY | Marker12294-Marker12303 | 2.51 | 6.8 | -0.17 | 12.35 |
qBW-A7-2 | 12AY | Marker13237-Marker13262 | 136.81 | 4.8 | -0.14 | 8.35 |
qBW-A9-1 | 12AY | Marker14917-Marker14853 | 104.21 | 2.9 | -0.11 | 5.20 |
qBW-A9-2 | 12AY | Marker14860-Marker14853 | 113.51 | 2.9 | -0.11 | 5.15 |
qBW-A10-1 | 13AY | Marker15678-Marker15699 | 11.21 | 2.7 | 0.10 | 4.54 |
qBW-A10-2 | 15AY | Marker15764-Marker15853 | 46.71 | 3.1 | 0.16 | 6.13 |
qBW-A13-1 | 14AY | Marker18938-Marker18929 | 137.71 | 3.3 | 0.13 | 5.41 |
qBW-D1-1 | 13AY | Marker22291-Marker22481 | 58.41 | 4.0 | 0.17 | 6.93 |
qBW-D1-2 | 13AY | Marker23531-Marker23573 | 88.41 | 3.5 | -0.20 | 6.67 |
qBW-D1-3 | 13AY | Marker23588-Marker23653 | 97.21 | 6.3 | -0.24 | 11.75 |
qBW-D1-4 | 15AY | JESPR63-Marker24027 | 141.91 | 2.7 | -0.14 | 5.26 |
qBW-D3-1 | 15AY | Marker25896-Marker25907 | 66.01 | 4.9 | -0.23 | 9.97 |
qBW-D3-2 | 15AY | Marker25934-Marker25943 | 75.51 | 2.7 | -0.20 | 5.61 |
qBW-D4-1 | 14AY | Marker27350-Marker27449 | 75.21 | 2.8 | -0.13 | 5.06 |
qBW-D4-2 | 14AY | Marker27456-Marker27461 | 80.91 | 5.8 | -0.18 | 10.05 |
qBW-D8-1 | 11AY | Marker34336-Marker34277 | 21.61 | 5.6 | -0.20 | 11.46 |
qBW-D8-2 | 13AY | Marker34277-Marker34256 | 30.31 | 5.0 | -0.15 | 9.03 |
qBW-D8-3 | 11AY | Marker34199-Marker34193 | 37.61 | 3.1 | 0.14 | 5.98 |
qBW-D8-4 | 15AY | Marker33593-Marker33578 | 135.51 | 3.1 | 0.16 | 5.96 |
qBW-D9-1 | 13AY | Marker36042-CGR6771 | 3.81 | 4.2 | -0.13 | 7.35 |
14AY | Marker36062-NAU3414 | 2.61 | 4.0 | -0.14 | 6.73 | |
qBW-D9-2 | 13AY | CGR6771-Marker36015 | 12.11 | 3.9 | -0.13 | 6.78 |
14AY | NAU3414-Marker36022 | 9.31 | 3.2 | -0.13 | 5.52 | |
qBW-D9-3 | 13AY | Marker34442-PGML02810 | 152.11 | 3.5 | -0.12 | 6.37 |
qBW-D10-1 | 12AY | Marker36290-Marker36274 | 74.91 | 2.6 | -0.10 | 4.46 |
qBW-D11-1 | 14AY | Marker36676-Marker36674 | 101.31 | 3.5 | -0.13 | 5.79 |
qBW-D11-2 | 14AY | Marker36669-Marker36663 | 109.01 | 3.8 | -0.14 | 6.29 |
表4
利用5个环境中铃重数据平均值检测到的QTLs"
QTL | 标记区间 Maker interval | 位置 Position /cM | LOD | 加性效应 Additive effect | 贡献率 Phenotypic variation /% |
qBW-A2-1 | Marker3612-Marker3637 | 118.61 | 4.2 | -0.12 | 7.53 |
qBW-A4-1 | Marker5055-Marker5065 | 87.81 | 4.8 | -0.12 | 9.27 |
qBW-A4-2 | Marker5080-Marker5087 | 101.91 | 6.0 | -0.14 | 11.92 |
qBW-A4-4 | Marker5076-Marker5080 | 96.71 | 5.8 | -0.14 | 10.90 |
qBW-A5-2 | Marker5290-Marker5280 | 145.71 | 2.8 | -0.09 | 5.04 |
qBW-A7-1 | Marker12294-Marker12303 | 2.51 | 2.9 | -0.09 | 5.08 |
qBW-A7-2 | Marker13243-Marker13267 | 138.31 | 5.3 | -0.13 | 9.62 |
qBW-A7-3 | Marker12307-Marker12319 | 8.31 | 2.7 | -0.09 | 4.80 |
qBW-D1-4 | DPL0425-Marker24025 | 141.91 | 4.0 | -0.11 | 7.32 |
[1] | 汤建. 棉花花铃期影响铃重的因素及提高技术[J]. 现代农业科技, 2014(7): 67-68. |
Tang Jian. The factors that affect the weight of the boll and the enhancement technique in cotton during flowing and boll formation stage[J]. Modern Agricultural Science and Technology, 2014(7): 67-68. | |
[2] | 董合忠, 毛树春, 张旺锋,等. 棉花优化成铃栽培理论及其新发展[J]. 中国农业科学, 2014, 47(3): 441-445. |
Dong Hezhong, Mao Shuchun, Zhang Wangfeng, et al. On boll-setting optimization theory for cotton cultivation and its new development[J]. Scientia Agricultura Sinica, 2014, 47(3): 441-445. | |
[3] |
Fedak G. Molecular aids for integration of alien chromatin through wide crosses[J]. Genome, 1999, 42(42): 584-591.
doi: 10.1139/g99-046 |
[4] | 邓琳, 余小刚, 姜朵,等. 棉花分子育种研究进展[J]. 山东农业科学, 2017, 49(5): 144-150. |
Deng Lin, Yu Xiaogang, Jiang Duo, et al. Research progress of cotton molecular breeding[J]. Shandong Agricultural Sciences, 2017, 49(5): 144-150. | |
[5] |
Wang Yonghong, Xue Yongbiao, Li Jiayang. Towards molecular breeding and improvement of rice in China[J]. Trends in Plant Science, 2005, 10(12): 610-614.
pmid: 16290216 |
[6] | 程式华, 庄杰云, 曹立勇,等. 超级杂交稻分子育种研究[J]. 中国水稻科学, 2004, 18(5): 377-383. |
Cheng Shihua, Zhuang Jieyun, Cao Liyong, et al. Molecular breeding for super rice hybrids[J]. Chinese Journal of Rice Science, 2004, 18(5): 377-383. | |
[7] | 李成奇, 郭旺珍, 马晓玲,等. 陆地棉衣分差异群体产量及产量构成因素的QTL标记和定位[J]. 棉花学报, 2008, 20(3): 163-169. |
Li Chengqi, Guo Wangzhen, Ma Xiaoling,et al. Tagging and mapping of QTL for yield and its components in upland cotton(Gossypium hirsutum L.) population with varied lint percentage[J]. Cotton Science, 2008, 20(3): 163-169. | |
[8] | 王婷. 陆地棉铃重相关性状的QTL定位分析[D]. 南京: 南京农业大学, 2013. |
Wang Ting. QTL mapping for traits related to boll weight in upland cotton (Gossypium hirsutum L.)[D]. Nanjing: Nanjing Agricultural University, 2013. | |
[9] |
Wu Jiaxiang, Gutierrez O A, Jenkins J N, et al. Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of upland cotton[J]. Euphytica, 2009, 165(2): 231-245.
doi: 10.1007/s10681-008-9748-8 |
[10] |
Wang Baohua, Guo Wangzhen, Zhu Xiefeng, et al. QTL mapping of yield and yield components for elite hybrid derived-RILs in upland cotton[J]. Journal of Genetics and Genomics, 2007, 34(1): 35-45.
pmid: 17469776 |
[11] |
Zhang Shuwen, Feng Liuchun, Xing Luting,et al. New QTLs for lint percentage and boll weight mined in introgression lines from two feral landraces into Gossypium hirsutum acc TM-1[J]. Plant Breeding, 2016, 135(1): 90-101.
doi: 10.1111/pbr.2016.135.issue-1 |
[12] |
Fan Liping, Wang Liping, Wang Xinyi, et al. A high-density genetic map of extra-long staple cotton (Gossypium barbadense) constructed using genotyping-by sequencing based single nucleotide polymorphic markers and identification of fiber traits-related QTL in a recombinant inbred line population[J]. BMC Genomics, 2018, 19: 489. https://doi.org/10.1186/s12864-018-4890-8.
doi: 10.1186/s12864-018-4890-8 pmid: 29940861 |
[13] |
Yu Jiwen, Zhang Ke, Li Shuaiyang, et al. Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum×Gossypium barbadense backcross inbred line population[J]. Theoretical and Applied Genetics, 2013, 126(1): 275-287.
doi: 10.1007/s00122-012-1980-x pmid: 23064252 |
[14] |
Zhang Zhen, Shang Haihong, Shi Yuzhen, et al. Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to quantitative trait loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum.)[J]. BMC Plant Biology, 2016, 16(1): 79. https://doi.org/10.1186/s12870-016-0741-4.
doi: https://doi.org/10.1186/s12870-016-0741-4 |
[15] | 杨继龙. 利用RILs进行棉花早熟和纤维品质性状的QTL定位研究[D]. 武汉: 华中农业大学, 2013. |
Yang Jilong. QTL location of earliness and fiber quality in cotton using RILs[D]. Wuhan: Huazhong Agricultural University, 2013. | |
[16] |
Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis[J]. Plant Molecular Biology Reporter, 1993, 11(2): 122-127.
doi: 10.1007/BF02670470 |
[17] |
Willing E M, Hoffmann M, Klein J D,et al. Paired-end RAD-seq for de novo assembly and marker design without available reference[J]. Bioinformatics, 2011, 27(16): 2187-2193.
doi: 10.1093/bioinformatics/btr346 |
[18] |
Miller M R, Dunham J P, Amores A,et al. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers[J]. Genome Research, 2007, 17(2): 240-248.
doi: 10.1101/gr.5681207 |
[19] |
Liu Dongyuan, Ma Chouxian, Hong Weiguo,et al. Construction and analysis of high-density linkage map using high-throughput sequencing data[J]. PLoS One, 2014, 9(6): e98855. https://doi.org/10.1371/journal.pone.0098855.
doi: https://doi.org/10.1371/journal.pone.0098855 |
[20] |
Zeng Zhaobang. Precision mapping of quantitative trait loci[J]. Genetics, 1994, 136(4): 1457-1468.
pmid: 8013918 |
[21] |
McCouch S R, Chen Xiuli, Panaud O, et al. Microsatellite marker development, mapping and applications in rice genetics and breeding[J]. Plant Molecular Biology, 1997, 35(1/2): 89-99.
doi: 10.1023/A:1005711431474 |
[22] |
Zhang Tianzhen, Hu Yan, Jiang Wenkai,et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement[J]. Nature Biotechnology, 2015, 33(5): 531-537.
doi: 10.1038/nbt.3207 pmid: 25893781 |
[23] | 贾晓昀. 陆地棉种内高密度遗传图谱构建及重要农艺性状QTL定位[D]. 杨凌: 西北农林科技大学, 2017. |
Jia Xiaoyun. Inter-specific high-density genetic map construction and major agronomic traits QTL mapping for upland cotton (Gossypium hirsutum L.)[D]. Yangling: Northwest A&F University, 2017. | |
[24] |
Jia Xiaoyun, Pang Chaoyou, Wei Hengling, et al. High-density linkage map construction and QTL analysis for earliness-related traits in Gossypium hirsutum L.[J]. BMC Genomics, 2016, 17 (1): 909. https://doi.org/ 10.1186/s12864-016-3269-y.
doi: https://doi.org/ 10.1186/s12864-016-3269-y pmid: 27835938 |
[25] |
Wang Hantao, Jin Xin, Zhang Beibei, et al. Enrichment of an intraspecific genetic map of upland cotton by developing markers using parental RAD sequencing[J]. DNA Research, 2015, 22(2): 147-160.
doi: 10.1093/dnares/dsu047 pmid: 25656006 |
[26] |
Wang Hantao, Huang Cong, Guo Huanle, et al. QTL mapping for fiber and yield traits in upland cotton under multiple environments[J]. PLoS One, 2015, 10(6): e130742. https://doi.org/10.1371/journal.pone.0130742.
doi: https://doi.org/10.1371/journal.pone.0130742 |
[27] | 徐云碧. 分子植物育种[M]. 北京: 科学出版社, 2014: 132. |
Xu Yunbi. Molecular Plant Breeding[M]. Beijing: Science Press, 2014: 132. | |
[28] |
郑巨云, George O, Khan M K R,等. 毛棉苗期抗旱性状的QTL定位[J]. 棉花学报, 2017, 29(1): 29-39.
doi: https://doi.org/10.11963/issn.1002-7807.201701004 |
Zheng Juyun, George O, Khan M K R, et al. Mapping QTLs for traits related to drought tolerance at the seedling stage in an inter-specific[J]. Cotton Science, 2017, 29(1): 29-39. https://doi.org/10.11963/issn.1002-7807.201701004
doi: https://doi.org/10.11963/issn.1002-7807.201701004 |
|
[29] |
Nielsen R, Paul J S, Albrechtsen A, et al. Genotype and SNP calling from next-generation sequencing data[J]. Nature Reviews Genetics, 2011, 12(6): 443-451.
doi: 10.1038/nrg2986 pmid: 21587300 |
[30] |
Lorenzo B, Sergio L, Ezio P, et al. Identification of SNP and SSR markers in eggplant using RAD tag sequencing[J]. BMC Genomics, 2011, 12(1): 1-9.
doi: 10.1186/1471-2164-12-1 |
[31] |
Blenda A, Fang D D, Rami J F, et al. A high density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check[J]. PLoS One, 2012, 7(9): e45739. https://doi.org/ 10.1371/journal.pone.0045739.
doi: https://doi.org/ 10.1371/journal.pone.0045739 |
[32] |
Liang Zhao, Lü Yuanda, Cai Caiping, et al. Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information[J]. BMC Genomics, 2012, 13(1): 539. https://doi.org/10.1186/1471-2164-13-539.
doi: https://doi.org/10.1186/1471-2164-13-539 |
[33] |
Tanksley S D, Nelson J C. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines[J]. Theoretical and Applied Genetics, 1996, 92(2): 191-203.
doi: 10.1007/BF00223376 pmid: 24166168 |
[34] |
Jiang Chunxiao, Wright R J, El-Zik K M, et al. Polyploid formation created unique avenues for response to selection in Gossypium (cotton)[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(8): 4419-4424.
pmid: 9539752 |
[35] |
Yu Jing, Kohel R J, Smith C W. The construction of a tetraploid cotton genome wide comprehensive reference map[J]. Genomics, 2010, 95(4): 230-240.
doi: 10.1016/j.ygeno.2010.02.001 pmid: 20171271 |
[36] |
Wang Kai, Song Xianliang, Han Zhiguo, et al. Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping[J]. Theoretical and Applied Genetics, 2006, 113(1): 73-80.
pmid: 16609860 |
[1] | 李鸣凤,彭文勇,何华,刘新伟,赵竹青. 外施不同形态硼对棉花吸收利用硼及其他矿质元素的影响[J]. 棉花学报, 2021, 33(5): 385-392. |
[2] | 王燕,张谦,王树林,韩硕,冯国艺,董明,钱玉源,祁虹. 耕层重构对棉田土壤养分、微生物数量与酶活性的影响[J]. 棉花学报, 2021, 33(5): 422-434. |
[3] | 张岚,程琦,梁士辰,邓雨潇,潘玉欣. 棉花UGPase基因鉴定与生物信息学分析[J]. 棉花学报, 2021, 33(4): 337-346. |
[4] | 马怡茹,吕新,祁亚琴,张泽,易翔,陈翔宇,鄢天荥,侯彤瑜. 基于无人机数码图像的机采棉脱叶率监测模型构建[J]. 棉花学报, 2021, 33(4): 347-359. |
[5] | 苟浩琦,马常凯,张迁,范术丽,马启峰,张朝军. 棉花光敏雄性不育系psm5的培育及其育性转变规律[J]. 棉花学报, 2021, 33(4): 360-367. |
[6] | 王林, 张强, 马江锋, 朱玉永, 田英, 李红, 毕显杰, 宋敏, 王海标, 雷天翔, 李召虎, 田晓莉, 杜明伟, 张立祯, 赵冰梅. 新疆棉区植保无人机喷施棉花脱叶催熟剂效果研究[J]. 棉花学报, 2021, 33(3): 200-208. |
[7] | 王金刚, 姜艳, 田甜, 朱永琪, 杨振康, 周天航, 张文旭, 佟炫梦, 孙嘉祺, 王海江. 减氮配施生物刺激素对棉花产量及氮肥吸收利用的影响[J]. 棉花学报, 2021, 33(3): 209-223. |
[8] | 易翔, 张立福, 吕新, 张泽, 田敏, 印彩霞, 马怡茹, 范向龙. 基于无人机高光谱融合连续投影算法估算棉花地上部生物量[J]. 棉花学报, 2021, 33(3): 224-234. |
[9] | 孙璘, 海艳, 唐晓雪, 祖丽皮亚·艾买, 焦瑞莲, 任毓忠, 李国英. 新疆棉花茎腐病的病原鉴定及其生物学特性研究[J]. 棉花学报, 2021, 33(3): 235-246. |
[10] | 党文芳, 刘萍, 管力慧, 杨红梅, 牛新湘, 李萍, 楚敏, 娄恺, 史应武. 土壤环境因子对棉花根际与内生拮抗细菌存活数量的影响[J]. 棉花学报, 2021, 33(3): 247-257. |
[11] | 杨可心, 陈秀叶, 刘畅, 鹿秀云, 郭庆港, 马平. 棉花枯萎病菌新生理型菌株毒素鉴定及其活性测定[J]. 棉花学报, 2021, 33(3): 258-268. |
[12] | 安杰,韩迎春,张正贵,冯璐,雷亚平,杨北方,王国平,李小飞,王占彪,邢芳芳,熊世武,辛明华,李亚兵. 不同熟性棉花品种冠层温度分布特点[J]. 棉花学报, 2021, 33(2): 134-143. |
[13] | 孟浩峰,雷长英,张旺锋,张亚黎. 系统调控下棉花比叶重的变化机制[J]. 棉花学报, 2021, 33(2): 144-154. |
[14] | 张友昌,黄晓莉,胡爱兵,李洪菊,冯常辉,李蔚,张贤红,罗艳萍,杨国正. 长江流域麦/油后直播棉花播种时间下限研究[J]. 棉花学报, 2021, 33(2): 155-168. |
[15] | 王广恩,郭丽,钱玉源,刘祎,张曦. 不同咸水利用方式对棉花叶绿素荧光参数及土壤盐分的影响[J]. 棉花学报, 2021, 33(1): 13-21. |
|