Please wait a minute...

   检索  |  高级检索
棉花学报  2018, Vol. 30 Issue (3): 252-260    DOI: 10.11963/1002-7807.lsyzxh.20180409
  研究与进展 本期目录 | 过刊浏览 | 高级检索 |
外源24-表油菜素内酯对低温胁迫下棉花幼苗光合生理的影响
李淑叶,马慧娟,张思平,刘绍东,沈倩,陈静,葛常伟,庞朝友*,赵新华*
中国农业科学院棉花研究所/棉花生物学国家重点实验室, 河南 安阳 455000
Effects of Exogenous 24-epibrassinolide on Photosynthetic Physiology of CottonSeedlings under Low Temperature
Li Shuye, Ma Huijuan, Zhang Siping, Liu Shaodong, Shen Qian, Chen Jing, Ge Changwei, Pang Chaoyou*, Zhao Xinhua*
Institute of Cotton Research of Chinese Academy of Agricultural Sciences / State Key Laboratory of Cotton Biology, Anyang, Henan 45500, China
全文: PDF(2126 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 【目的】研究外源24-表油菜素内酯(24-Epibrassinolide, EBR)对低温胁迫下棉花幼苗光合生理的影响,为EBR作为生长调节剂提高棉花耐冷能力提供依据。【方法】以中棉所60、鲁棉研28和泗棉3号为试验材料,在中棉所试验农场东场(河南省安阳县)进行大田试验,棉花苗期第一次低温来临前叶面喷施蒸馏水(CK)和不同浓度的EBR(0.1 mg·L-1和0.2 mg·L-1),3 d后测定叶片的相对电导率、叶绿素含量和快速叶绿素荧光诱导动力学曲线(OJIP曲线)及荧光参数。【结果】低温胁迫下,中棉所60、鲁棉研28和泗棉3号喷施EBR后相对电导率较对照下降17.7%~32.8%,中棉所60和鲁棉研28不同浓度EBR处理没有显著差异,但泗棉3号0.2 mg·L-1 EBR处理较0.1 mg·L-1 EBR处理叶片相对电导率显著降低;棉花叶片喷施EBR后叶绿素a和叶绿素b含量较对照分别提高9.7%~32.6%和15.0%~18.9%,光系统Ⅱ(PhotosystemⅡ, PSⅡ)最大光化学效率(FV/FM )和基于吸收光能的性能指数(PIABS,Performance index on absorption basis)显著提高,其中中棉所60在0.1 mg·L-1 EBR处理后PIABS提高幅度最大为75.6%,鲁棉研28和泗棉3号喷施0.2 mg·L-1 EBR后PIABS增加幅度最大,分别提高101.1%和265.6%,单位受光面积吸收的光能(ABS/CSm)、单位有活性反应中心将电子传递到电子传递链QA下游其他电子受体的能量(ETo/RC)和将电子传递到QA下游电子受体的概率(φEo)显著提高。【结论】外源EBR可以降低低温胁迫下棉花幼苗的相对电导率,通过提高叶片光能捕获能力、光合电子传递能力和叶绿素含量缓解低温对棉花光合作用的抑制,其中中棉所60喷施0.1 mg·L-1 EBR处理效果较好,鲁棉研28和泗棉3号喷施0.2 mg·L-1处理效果较好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李淑叶
马慧娟
张思平
刘绍东
沈倩
陈静
葛常伟
庞朝友
赵新华
关键词 棉花低温24-表油菜素内酯叶绿素荧光    
Abstract:[Objective] The objective of this study was to investigate the effects of exogenous 24-epibrassinolide (EBR) on the photosynthetic physiology of cotton seedlings under low temperature and to provide basis for improving the cold tolerance of cotton by using EBR as growth regulator. [Method] Taking CCRI 60, Lumianyan 28 and Simian 3 as materials, a field experiment was carried out in Institute of Cotton Research of CAAS(Anyang county, Henan province). Before the first low temperature treatment, the cotton seedlings were sprayed with distilled water (Control) and different concentrations of EBR (0.1 mg·L-1 and 0.2 mg·L-1), respectively. After 3 days, the relative electrical conductivity, chlorophyll content, rapid chlorophyll fluorescence induction kinetic curve (OJIP) and fluorescence parameters were measured. [Result] Under low temperature, the relative conductivity of CCRI 60, Lumianyan 28 and Simian 3 spraying with EBR decreased by 17.7%~32.8% compared with control, and there was no significant difference between CCRI 60 and Lumianyan 28 in different concentrations of EBR treatments, but the relative conductivity of Simian 3 treating with 0.2 mg·L-1 EBR was significantly lower than those treatments with 0.1 mg·L-1 EBR . The chl a and chl b contents increased by 9.7%~32.6% and 15.0%~18.9%, respectively. The maximum photochemical efficiency of photosystemⅡ (Fv/FM) and photosynthetic performance index on absorption basis(PIABS) increased significantly. PIABS of CCRI 60 increase the maximum by 75.6% using 0.1 mg·L-1 EBR. Lumianyan 28 and Simian 3 increased the maximum by 101.1% and 265.6% using 0.2 mg·L-1 EBR, respectively; Absorbed photon flux per cross section (ABS/CSm), electron transport flux (further than QA) per active reactive center (ETo/RC) and probability for electron transport (φEo) are significantly increased. [Conclusion] Exogenous EBR can enhance the ability of low temperature tolerance of cotton seedlings and alleviate the inhibition of photosynthesis in cotton at low temperature. The study showed that 0.1 mg·L-1 EBR performs well in CCRI 60 and 0.2 mg·L-1 in Lumianyan 28 and Simian 3.
Key wordsCotton    low temperature    24-epibrassinolide    chlorophyll fluorescence induction kinetic curve
收稿日期: 2017-09-28      出版日期: 2018-06-07
中图分类号:  S562.01  
基金资助:公益性行业(农业)科研专题:水浇地合理耕层构建技术指标研究(201503117);国家科技支撑计划“棉花高产高效关键技术研究与示范”(2014BAD11B02);国家现代农业产业技术体系建设专项资金(CARS-18-17)
*通信作者: 庞朝友,chypang@163.com;赵新华,zhaoxinhua1968@126.com   
作者简介: 李淑叶(1990-),女,硕士研究生,15737295256@163.com
引用本文:   
李淑叶,马慧娟,张思平, 等. 外源24-表油菜素内酯对低温胁迫下棉花幼苗光合生理的影响[J]. 棉花学报, 2018, 30(3): 252-260.
Li Shuye,Ma Huijuan,Zhang Siping, et al. Effects of Exogenous 24-epibrassinolide on Photosynthetic Physiology of CottonSeedlings under Low Temperature[J]. Cotton Science, 2018, 30(3): 252-260.
链接本文:  
http://journal.cricaas.com.cn/Jweb_mhxb/CN/10.11963/1002-7807.lsyzxh.20180409      或      http://journal.cricaas.com.cn/Jweb_mhxb/CN/Y2018/V30/I3/252
[1] 武威, 张巨松, 石俊毅, 等. 棉花幼苗对不同程度低温逆境的生理响应[J]. 西北植物学报, 2013, 33(1): 74-82.<br />
Wu Wei, Zhang Jushong, Shi Junyi, et al. Physiological response of cotton seedlings to different degree of low temperature stress[J]. Acta Bot Boreal- Occident Sin, 2013, 33(1): 74-82.<br />
[2] 王俊娟, 王帅, 陆许可, 等. 棉花幼苗对低温胁迫的响应及抗冷机制初步研究[J]. 棉花学报, 2017, 29(2): 147-156.<br />
Wang Junjuan, Wang Shuai, Lu Xuke, et al. The effect of low temperature stress on the growth of upland cotton seedlings and a preliminary study of cold-resistance mechanisms[J]. Cotton Science, 2017, 29(2): 147-156.<br />
[3] Liu Ao, Hu Zhengrong, Bi Aoyue, et al. Photosynthesis, antioxidant system and gene of bermudagrass in response to low temperature and salt stress[J]. Ecotoxicology, 2016, 25(8): 1445-1457.<br />
[4] 刘春英, 陈大印, 盖树鹏, 等. 高、低温胁迫对牡丹叶片PSⅡ功能和生理特性的影响[J]. 应用生态学报, 2012, 23(1): 133-139. <br />
Liu Chunying, Chen Dayin, Gai Shupeng, et al. Effects of high and low temperature stress on PSⅡ function and physiologicalcharacteristics of peony leaves[J]. Chinese Journal of Applied Ecology, 2012, 23(1): 133-139.<br />
[5] 武威, 戴海芳, 张巨松, 等. 棉花幼苗叶片光合特性对低温胁迫及恢复处理的响应[J]. 植物生态学报, 2014, 38(10): 1124-1134.<br />
Wu Wei, Dai Haifang, Zhang Jushong, et al. Responses of photosynthetic characteristics of leaves of cotton seedlings to low temperature stress and recovery[J]. Chinese Journal of Plant Ecology, 2014, 38(10): 1124-1134.<br />
[6] Abram S, Gert K, Reto S, et al. The role of low soil temperature in the inhibition of growth and PSⅡfunction during dark chilling in soybean genotypes of contrasting tolerance[J]. Physiologia Plantarum, 2007, 131(1): 89-105. <br />
[7] 张荣佳, 任菲, 白艳波, 等. 基于快速叶绿素荧光动力学分析逆境对PSⅡ影响的研究进展[J]. 安徽农业科学, 2012, 40(70): 3858-3859, 3964.<br />
Zhang Rongjia, Ren Fei, Bai Yanbo, et al. Advances in research on the effect of stress on PSⅡ based on rapid chlorophyll fluorescence kinetics[J]. Journal of Anhui Agri Sci, 2012, 40(70): 3858-3859, 3964.<br />
[8] Rapacz M , Sasal M, Hazem K, et al. Is the OJIP test a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under variable winter environments[J]. Plos One, 2015, 7(10): 1-18. <br />
[9] Zushi K, Kajiwara S, Matsuzoe N. Chlorophyll a fluorescence OJIP transient as a tool to characterize and evaluate response to heat and chilling stress in tomato leaf and fruit[J]. Scientia Horticulturae, 2012, 148(4): 39-46. <br />
[10] Priti K. Brassinosteroid-mediated stress responses[J]. Journal of Plant Growth Regulation, 2003, 22(4): 289-297.<br />
[11] Steven C, Jenneth S. Brassinosteroids: essential regulators of plant growth and development[J]. Annual Review of Plant Physiology Plant Molecular Biology, 1998, 49: 427-451.<br />
[12] Vardhini B V, Anjum A A. Brassinosteroids make plant life easier under abiotic stress mainly modulating major components of antioxidant defense system[J]. Frontiers in Environmental Science, 2015, 67(2): 1-15.<br />
[13] 常丹, 杨艺, 王艳, 等. 24-表油菜素内酯对PEG与盐胁迫下棉花种子萌发的影响[J]. 西北农业学报, 2015, 24(39): 96-101.<br />
Chang Dan, Yang Yi, Wang Yan, et al. Effect of 24-epibrassinolide on cotton seed germination under PEG and salt stress[J]. Acta Agricurae Boreali-occidentalis Sinica, 2015, 24(39): 96-101.<br />
[14] Wu X X, He J, Zhu Z W, et al. Proection of photosynthesis and antioxidative system by 24-epibrassinolide in solanum melongena under cold stress[J]. Biologia Plantarum, 2014, 58(1): 185-188.<br />
[15] Li Jie, Yang Ping, Kang Jungen, et al. Transcriptome analysis of pepper (Capsicum annuum) revealed a role of 24-epibrassinolide in response to chilling[J]. Frontiers in Plant Science, 2016, 7: 1-17.<br />
[16] Jiang Yuping, Huang Lifeng, Cheng Fei, et al. Brassinosteroids accelerate recovery of photosynthetic apparatus from cold stress by balance the electron partitioning, carboxylation and redox homeostasis in cucumber[J]. Physiology Plant, 2013, 148(1): 133-145.<br />
[17] 王学奎.植物生理生化试验原理和技术[M]. 北京: 高等教育出版社, 2008: 282-283.<br />
Wang Xuekui. Principle and technology of plant physiological and biochemical test[M]. Beijing: Higher Education Press, 2008: 282-283.<br />
[18] Stirbet A, Govindjee. On the relation between the kautsky effect(chlorophyll a fluorescence induction)and photosystem Ⅱ: Basics and applications of the OJIP fluorescence transient[J]. Journal of Photochemistry and Photobiology, 2011, 104: 236-257. <br />
[19] 王荣富. 植物抗寒指标的应用及其应用[J]. 植物生理学通讯, 1987 (3): 49-55.<br />
Wang Rongfu. The kinds of plant hardiness criteria and their application[J]. Plant Physiology Comunication, 1987 (3): 49-55.<br />
[20] 王俊娟, 叶武威, 樊保香. 陆地棉不同生长阶段抗冷性初报[J]. 中国棉花, 2006, 33(4): 8-9.<br />
Wang Junjuan, Ye Wuwei, Fan Baoxiang. Preliminary report on cold resistance of upland cotton at different growth stages[J]. China Cotton, 2006,33 (4): 8-9.<br />
[21] 李婧, 毛树春, 韩迎春, 等. 温度胁迫对基质育苗移栽棉花缓苗期的影响[J]. 中国棉花, 2013,40(1): 18-20.<br />
Li Jing, Mao Shuchun, Han Yingchun, et al. Responses of soilless-substrate naked-seedling and transplanted cotton to temperature stress in recovering stage[J]. China Cotton, 2013, 40(1): 18-20.<br />
[22] Hayat S, Hasan S A, Yusuf M, et al. Effect of 28-homobrasinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata[J]. Environmental and Experimental Botany, 2010, 69(2): 105-112.<br />
[23] Rapacz M. Chlorophyll a fluorescence transient during freezing and recovery in winter wheat[J]. Photosynthetica, 2007, 45(3): 409-418.<br />
[24] Ensminger I, Busch F, Huner N P. Photostasis and cold acclimation: Sensing low temperature through photosynthesis[J]. Physiology Plant, 2006, 126(1): 28-44.<br />
[25] 李鹏民, 高辉远, Reto S. 快速叶绿素荧光诱导动力学在光合作用研究中的应用[J]. 植物生理与分子生物学报, 2005, 31(6): 559-566.<br />
Li Pengmin, Gao Huiyuan, Reto S. Application of the fast chlorophyll fluorescence induction dynamics in photosynthesisstudy[J]. Physiology Plant, 2006, 126(1): 28-44.<br />
[26] Hu W H, Wu Z. Chill-induced inhibition of photosynthesis was alleviated by 24-epibrassinolide pretreatment in cucumber during chilling and subsequent recovery[J]. Photosynthetica, 2010, 48(4): 537-544.<br />
[27] Faridduudin Q,Yusuf M, Ahmad I, et al. Brassinosteroids and their role in response of plants to abiotic stresses[J]. Biologia Plantarum, 2014, 58(1): 9-17.<br />
[28] Divi U K, Krishna P. Brassinoteroid: a biotechnological target for enhancing crop yield and stress tolerance[J]. New Biotechnology, 2009, 26(3): 131-136.<br />
[29] 郝辉芳, 范月仙, 李生泉. 低温锻炼对冷胁迫下棉苗叶片细胞超微结构的影响[J]. 棉花学报, 2017, 29(3): 268-273.<br />
Hao Huifang, Fan Yuexian, Li Shengquan. Effects of cold acclimation on chilling tolerance and leaf ultrastructure in cotton seedlings[J]. Cotton Science, 2017, 29(3): 268-273.<br />
[30] Giffith M, Brown G N, Huner N. Structural changes in thylakoid proteins during cold acclimation and freezing of winter rye[J]. Plant Physiology, 1982, 70(2): 418-423.<br />
[31] Li Jie, Yang Ping, Gan Yantai. Brassinosteroid alleviates chilling-induced oxidative stress in pepper by enhancing antioxidation systems and maintenance of photosystemⅡ[J]. Acta Physiol Plant, 2015, 37(222): 1-11.<br />
[32] 李涛涛, 高永峰, 马瑄, 等. 外源油菜素内酯对三种杨树在干旱、盐和铜胁迫下光合生理的影响[J]. 基因组学与应用生物学, 2016, 35(1): 218-226.<br />
Li Taotao, Gao Yongfeng, Ma Xuan, et al. Effects of exogenous brassinolide on photosynthetic physiology of three poplar populations under drought, salt and copper stress[J]. Genomics and Applied Biology, 2016, 35(1): 218-226.
[1] 李冬旺, 张永江, 刘连涛, 孙红春, 刘玉春, 白志英, 李存东. 干旱胁迫对棉花冠层光合、光谱和荧光的影响[J]. 棉花学报, 2018, 30(3): 242-251.
[2] 梅磊, 李玲, 肖钦之, 陈进红, 祝水金. 陆地棉植物络合素合酶基因的鉴定与功能预测[J]. 棉花学报, 2018, 30(3): 215-223.
[3] 徐瑞强, 董合林, 徐文修, 卡地力亚·阿不都克力木, 阿地娜·白山哈力, 董泰丽, 付传翠, 吾仁图雅·皮力加, 唐江华. 喷施浓缩沼液对棉花幼苗生长发育和生理特性的影响[J]. 棉花学报, 2018, 30(3): 261-271.
[4] 李映程, 张国丽, 任毓忠, 李海强, 武刚, 李天义, 李国英, 张莉. 基于rDNA-ITS和组蛋白3基因序列分析鉴定新疆棉花叶斑病病原[J]. 棉花学报, 2018, 30(3): 271-281.
[5] 陈丽华, 何鹏飞, 袁德超, 欧晓慧, 吴毅歆, 何月秋. 一种防治棉花黄萎病的生物复合种衣剂的研制[J]. 棉花学报, 2018, 30(3): 282-290,封三.
[6] 栗战帅, 魏恒玲, 庞朝友, 王寒涛, 马启峰, 宿俊吉, 陈全家, 曲延英, 范术丽, 喻树迅. 棉花果枝节间长短性状内源激素的差异以及外施激素对其影响[J]. 棉花学报, 2018, 30(3): 224-230.
[7] 龙金辉, 朱真峰. 融合马尔可夫随机场与量子粒子群聚类的棉花图像分割算法[J]. 棉花学报, 2018, 30(2): 197-204.
[8] 孔令磊, 石玉真, 李邵琦, 黎波涛, 李俊文, 刘爱英, 龚举武, 商海红, 巩万奎, 葛群, 王艳玲, 宋威武, 袁有禄. 棉花陆海渐渗系双交分离群体产量和纤维品质性状的QTL定位[J]. 棉花学报, 2018, 30(2): 119-127.
[9] 张帆, 李晓林, 张敬泽, 祝水金. 病原物协同致病性对棉花黄萎病严重度的影响[J]. 棉花学报, 2018, 30(2): 188-196.
[10] 李青军, 张 炎, 哈丽哈什·依巴提, 冯固. 膜下滴灌棉花对3种水溶性磷肥的利用效率和产量响应[J]. 棉花学报, 2018, 30(2): 172-179.
[11] 乔清华, 张传云, 袁哲诚, 王芙蓉, 张军. 多年连作土壤中棉花根际细菌群落结构及其动态[J]. 棉花学报, 2018, 30(2): 128-135.
[12] 宋兴虎, Tufail Ahmed Wagan, Biangkham Souliyanonh, Saif Ali, 黄颖, 袁源, 杨国正. 氮肥用量及其后效对棉花产量和生物质累积动态的影响[J]. 棉花学报, 2018, 30(2): 145-154.
[13] 高超, 李明思, 蓝明菊. 土壤水分空间胁迫对棉花根系构型的影响[J]. 棉花学报, 2018, 30(2): 180-187.
[14] 张希鹤, 李岩, 郁凯, 霍钰阳, 王友华, 陈兵林. 黄萎病胁迫影响棉花幼苗光合及叶绿素荧光特性的机理[J]. 棉花学报, 2018, 30(2): 136-144.
[15] 孙淼, 李鹏程, 郑苍松, 刘帅, 刘爱忠, 韩慧敏, 刘敬然, 董合林. 低磷胁迫对不同基因型棉花苗期根系形态及生理特性的影响[J]. 棉花学报, 2018, 30(1): 45-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed